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Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL
o Quantifier Free Fragment (QFF)
o QFF of Equality
o Presburger arithmetic
o (QFF of) Linear integer arithmetic
o Real arithmetic
o (QFF of) Linear real/rational arithmetic
o QFF of Recursive Data Structures
o QFF of Arrays
o Putting it all together (Nelson-Oppen).
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First-Order Logic



Syntax of First-Order Logic g

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Y, Zye e
constants a,b,c,---
functions f,g,h,--- with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x, f(a), g(x, b), f(g(x, f(b)))
predicates p,q,r,--- with arity n > 0
atom T, L, or an n-ary predicate applied to n terms
literal atom or its negation

p(f(x), g(x, f(x))),  —p(f(x),&(x, f(x)))

Note: 0-ary functions: constant
0-ary predicates: P, Q,R,...
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Syntax of First-Order Logic (2)

quantifiers
existential quantifier ~ 3x.F[x]
“there exists an x such that F[x]"

universal quantifier  Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives
(=, V, A, =, ¢>) to formulae,
or application of a quantifier to a formula

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2013 5/ 36



Example

FOL formula

Vx. (p(f(x),x) = (Fy- (p(f(&(x,¥)) &(x,¥)))) A a(x,f(x)))
G

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
f p(F(x), %)
then there exists a y such that

p(f(g(x,y)) &(x,y)) and q(x, f(x))"
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Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths of the
other two sides

Vx,y,z. triangle(x, y, z) — length(x) < length(y) + length(z)

@ Fermat's Last Theorem.

Vn. integer(n) A n > 2
—Vx,y, z.
integer(x) A integer(y) A integer(z)
AxX>0Ay >0Az>0
_>Xn + yn # Zn
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Pumping Lemma

For every regular Language L there is some n > 0, such that for all words z € L

with |z| > n there is a decomposition z
that forall i > 0: uv'w € L.

VL. regularlanguage(L)—
dn. integer(n) A n > OA
Vz.z € LA |z| > n—
u, v, w. word(u) A word(v) A word(w)A
z=uw A |v| > 1A |uv|] < nA
Vi. integer(i) Ai > 0 — uviw € L
<> =

Predicates: regularlanguage, integer, word, - € -,

Constants: 0, 1
Functions: | - | (word length), concatenation, iteration
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FOL Semantics g

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example D; = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
@ Assignment «y

o each variable x assigned value oy[x] € Dy
e each n-ary function f assigned

a,[f] : DI" — D/

In particular, each constant a (0-ary function) assigned value «ay[a] € Dy
e each n-ary predicate p assigned

arfpl = Df = {T, L}

In particular, each propositional variable P (0-ary predicate) assigned truth value
(T, 1)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 9 /36



Example

F: p(f(x,y),z) — p(y,

Interpretation | : (Dy, ay)

g(z,x))

D=%72={-,-2,-1,0,1,2,---} integers

a,[f] . Dl2 — D[
(x,y) = x+vy
alp] : D,2 — {T,L1}

(x,y) = !

alg] : D,2 — Dy
(x,y) = x—y

ifx <y

1 otherwise
Also ay[x] = 13, a4ly] = 42,4[z] = 1
Compute the truth value of F under /

L1~ p(

f(x,y),z) since 13 + 42 > 1

2. | ¥~ ply,g(z,x)) since 42 > 1 — 13

3. I =F

F is true under /
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Semantics: Terms and Atoms

The assignment «; is inductively extended to terms:

o Base Case: For variables and constants « is already defined.

@ Induction Step: Let ti,...,t, be terms. We define
wlf(tr,- )] = lf] (eults),. . ulta]).
~—~— —— ——
GD,"—>D/ eD, €D,
For an atom p(ti,...,t,) we define:
I'= p(t,... ta) iff alp]  (asfta],. .. aufta]) =
~—— —— ——
eDy—{T,L} €D eD,
and

T

/ Fé p(tl,...,tn) iff a/[p] (a/[tl],...,a/[tn]) = 1.
M~ = ~——

eDp—{T,1} €D €D,
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Semantics: Quantifiers g

For a variable x:

Definition (x-variant)

An x-variant of interpretation / is an interpretation J : (D, ay) such that
e D =D,
e «ay[y] = ayly] for all symbols y, except possibly x

That is, / and J agree on everything except possibly the value of x

Denote J : | < {x — v} the x-variant of / in which a [x] = v for some v € D;.
Then

o | EVx. F iffforallve D, l<{x—v}EF
o /| E 3dx. F iffthereexistsv € Dyst. | <{x — v} = F
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Example g

Consider
F:Vx.dy.2.-y =x

Here 2 - y is the infix notatation of the term -(2,y),
and 2 - y = x is the infix notatation of the atom = (:(2, y), x).

@ 2 is a O-ary function symbol (a constant).
@ - is a 2-ary function symbol.
@ = is a 2-ary predicate symbol.

@ X,y are variables.

What is the truth-value of F?
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Example (Z) 2

F:Vx.dy.2 -y =x

Let / be the standard interpration for integers, D; = Z.
Compute the value of F under [I:

| EVx.3y. 2.y =x
iff
forallv e D, I <{x — v} =3y.2 -y =x
iff
forallv € Dy, thereexistsvy € D),  <{x = vi<a{y » vi} F2 -y = x

The latter is false since for 1 € D, there is no number vy with 2 - vy = 1.
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Example (Q) &

F:Vx.dy.2.y =x

Let / be the standard interpration for rational numbers, D; = Q.
Compute the value of F under I:

| EVx.3dy. 2.y =x
iff
forallve D, I <{x— v} E3dy.2 -y =x
iff

forallv € Dy, thereexistsvy € D), I <{x —» vi<a{y » vi} F 2 -y = x

The latter is true since for v. € D; we can choose vi = 3.
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Satisfiability and Validity g

Definition (Satisfiability)
F is satisfiable iff there exists an interpretation / such that | = F.

Definition (Validity)
F is valid iff for all interpretations /, | |= F.

F is valid iff =F is unsatisfiable I
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Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.
F ¥y (p(x,y) = ply,x))

should be transformed to
G : Vy. (p(a,y) = ply,a))

We call the mapping from x to a a substitution denoted as o : {x — a}. We write
Fo for the formula G.

Another convenient notation is F[x] for a formula containing the variable x and F[a]
for Fo.
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Substitution g

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

o {tl = S1,...,th — S,,}

By Fo we denote the application of ¢ to formula F, i.e., the formula F where all
occurences of ty, ..., t, are replaced by si, ..., sp.

For a formula named F[x] we write F[t] as shorthand for F[x]{x — t}.
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Safe Substitution g

Care has to be taken in the presence of quantifiers:
F[x] : Jy. y = Succ(x)

What is F[y]?
We need to rename bounded variables occuring in the substitution:

Fly] : 3y’. y' = Succ(y)
Bounded renaming does not change the models of a formula:

(Fy. y = Succ(x)) & (IFy'. y' = Succ(x))
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Recursive Definition of Substitution g

zn:
=]y
o(t) t € dom(o)
to = § f(tio,...,tao) t ¢ dom(o) At = f(t1,...,tn)
X t ¢ dom(o) ANt = x
p(t, ..., ta)o = p(tio, ..., tho)

(—=F)o = —(Fo)
(FA G)o = (Fo) A (Go)

Vx Fo x ¢ Vars(o)
(Vx. F)o = . :
((F{x — x'})o) otherwise and x’ is fresh
Ix. F V.
(x. F)o = 417 x & Vars(o)
Ax’. ((F{x — x'})o) otherwise and x’ is fresh
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Example: Safe Substitution Fo &

F o (vx. p(x.y))—= q(f(y), x)
bound by Vx ™\ free free /1 "\ free

o {x — g(x), y = f(x), f(y) — h(x,y)}
Fo?

@ Rename
F' 29X p(x,y) — q(f(y),x)
)

where x’ is a fresh variable

Q@ Fo : VX. p(x',f(x)) — q(h(x,y),g(x))
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Semantic Tableaux (Propositional logic) &

| = ~F e —F
I = F I = F
' = FAG '~ FAG
I = F IEF | TG
I):G%and < or
I =EFVG I~ FVvG | & F
IEF | IEG I = F | = F
I~ G =
| =F— G I F — G
IEF | TG = F
I~ G
| = F < G I F < G
I=EFANG | | £FVG l'=FAN-G | | =E=-FAG
)
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Semantic Tableaux for FOL &

2
=]y
The following additional rules are used for quantifiers:
I = Vx.F[x] for any term t I = Vx.F[x] for a fresh constant a

I'= Flt] I Fla]
| = 3Ix.F[x] for a fresh constant a | = 3x.F[x] for any term t

I'= Fla] I~ Fli]
(We assume that there are infinitely many constant symbols.)

The formula F[t] is created from the formula F[x] by the substitution {x — t}
(roughly, replace every x by t).
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Example

Show that (3x. Vy. p(x,y)) — (Vx. 3y. p(y, x)) is valid.

Assume otherwise.

Thus, the formula is valid.
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1. |~ (3x. Yy. p(x
2. | E Ix. Vy. p(x,
3. | Vx. Jy. p(y,
4. | E Vy. p(ay)
5. 1 ¥~ 3y. p(y,b)
6. | = p(a,b)

7. | ¥~ p(a,b)

8. Ik L

)) — (¥x. Jy. p(y,x))
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assumption

1and —

1and —

2, 3 (x +— a fresh)
3,V (x — b fresh)
4,V (y — b)

5 3(y — a)

6,7 contradictory

Summer 2013

24 / 36



Example

Is F : (Vx. p(x,x)) = (3x. Vy. p(x,y)) valid?.

Assume [ is a falsifying interpretation for F and apply semantic argument:

1. | & (Vx. p(x,x)) = (3x. Vy. p(x,y))

2. | E Vx. p(x,x) 1and —
3. | B 3x. Vy. p(x,y) 1and —
4. | E p(a1,a1) 2,V

5. | = Vy.p(a1,y) 3,3

6. |~ p(a,a2) 5V

7. | E p(a, a) 2,V

8. | & Vy.p(az,y) 3,3

9. | £ p(az,as3) 8,V

No contradiction. Falsifying interpretation / can be “read” from proof:

true Yy = X,
Dy =N, pi(x,y) = | false y=x+1

arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

25 / 36



Semantic Argument Proof g

To show FOL formula F is valid, assume | [~ F and derive a contradiction | = L
in all branches

@ Soundness
If every branch of a semantic argument proof reach /| |= L, then F is valid

@ Completeness
Each valid formula F has a semantic argument proof in which every branch
reach | = L

@ Non-termination
For an invalid formula F the method is not guaranteed to terminate. Thus, the
semantic argument is not a decision procedure for validity.
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Soundness (proof sketch) 2

If for interpretation / the assumption of the proof hold
then there is an interpretation /” and a branch
such that all statements on that branch hold.

I" differs from [ in the values «y[a;] of fresh constants a;.
If all branches of the proof end with / = L, then the assumption was wrong.

Thus, if the assumption was | [~ F, then F must be valid.
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Completeness (proof sketch) 2

Consider (finite or infinite) proof trees starting with / [~ F. We assume that
@ all possible proof rules were applied in all non-closed branches.

@ the V and J rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kénig's Lemma) and we have a finite
proof for F.
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Completeness (proof sketch, continued) &

(-3
Otherwise, the proof tree has at least one open branch P. We show that F is not™"
valid.

@ The statements on that branch P form a Hintikka set:
IEFAGEPimplies! EF e Pand!l E G € P.
ol £ FAGE Pimplies! £ F € Porl [£G e P.

o | = Vx. F[x] € P implies for all terms t, | = F[t] € P.
o | [~ Vx. F[x] € P implies for some term a, | [~ F[a] € P.
e Similarly for v, —, <, 3.

@ Choose Dy := {t | tisterm}, oy[f|(t1,...,tn) = f(t1,...tn),

true | = p(t1,...,ts) € P
false otherwise

wld = x arlpl(t....ty) = {

© |/ satisfies all statements on the branch.
In particular, [ is a falsifying interpretation of F, thus F is not valid.
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Normal Forms g

Also in first-order logic normal forms can be used:
@ Devise an algorithm to convert a formula to a normal form.

@ Then devise an algorithm for satisfiability/validity that only works on the
normal form.
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Negation Normal Forms (NNF) g

Negations appear only in literals. (only —, A, V, 3, V)
To transform F to equivalent F” in NNF use recursively
the following template equivalences (left-to-right):

-—F & kR -T & 1L L & T
—\(Fl N F2) < =f VvV —aF

De Morgan's Law
—\(Fl vV Fg) & AR

FR—FH < -FRVEHk
F1<—)F2<:>(F1—>F2)/\(F2—>F1)

—Vx. F[x] & 3x. =F[x]
—3x. F[x] & Vx. =F[x]
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Example: Conversion to NNF &

G : Vx. ((Jy. p(x,y) A p(x,z)) — Iw.p(x, w)) .

Q vx. ((3y. p(x,y) A p(x,2)) = Iw. p(x, w))

@ Vx. (=(3y. p(x,y) A p(x,2)) V 3w. p(x, w))
FR—>F < -FVF

@ Vx. ((Vy. =(p(x,y) A p(x,2))) V Iw. p(x,w))
—3dx. F[x] & Vx. =F[x]

@ Vx. ((Vy. =p(x,y) V =p(x,2)) V Iw. p(x,w))
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Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Qix1 - Qnxp. Flx1, -+, x]
where Q; € {V, 3} and F is quantifier-free.

Every FOL formula F can be transformed to formula F’' in PNF s.t. F/ & F:
@ Write F in NNF

@ Rename quantified variables to fresh names
© Move all quantifiers to the front
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Example: PNF

Find equivalent PNF of

F : vx. (3y. p(x,y) A p(x,2)) — y. p(x,y))

o Write F in NNF
Fio x ((Yy. =p(x,y) V =p(x,2)) V Jy. p(x,y))
@ Rename quantified variables to fresh names

Fa o Vx. ((Yy. =p(x,y) V —p(x,2)) V Iw. p(x, w))
T in the scope of Vx
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Example: PNF &

@ Move all quantifiers to the front
F3 : ¥x.Vy.3w. (=p(x,y) V =p(x,z) V p(x, w))
Alternately,
Fj . Vx. 3w. Vy. (=p(x,y) V =p(x,2) V p(x, w))

Note: In Fp, Vy is in the scope of Vx, therefore the order of quantifiers must be
c VX Yy

Fs & Fand Fy & F

Note: However G <« F
G . Vy.3dw. ¥x. (-p(x,y) V =p(x,z) V p(x,w))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 35/ 36



Decidability of FOL g

e FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is valid, i.e.
always halt and says “yes” if F is valid or say "“no” if F is invalid.

@ FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid, but does not
necessarily halt if F is invalid.

On the other hand,

@ PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g., the

truth-table procedure.

Similarly for satisfiability
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