Decision Procedures

Jochen Hoenicke (Software Engineering)

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Summer 2013

Decision Procedures Summer 2013

1/32

Nelson-Oppen Theory Combination

Combining Decision Procedures: Nelson-Oppen Method g

Motivation: How do we show that
F:1<x AN x<2A f(x)#Ff(1) N f(x)# f(2)

is (Te U Tz)-unsatisfiable?

Multiple Theories T; over signatures ¥;
(constants, functions, predicates)
with corresponding decision procedures P; for T;-satisfiability.

Decide satisfiability of a sentence in theory U; T;. I

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 3/32

Nelson-Oppen Combination Method (N-O Method)

21 NYy = {:}
> 1-theory Ty > »-theory T»
for Ti-satisfiability for T-satisfiability
of quantifier-free X ;-formulae of quantifier-free X,-formulae

N

.for T1 U Tp)-satisfiability
of quantifier-free (X1 U X)-formulae

We show how to get Procedure P from Procdures P; and P».

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

4/32

Nelson-Oppen: Limitations

Given formula F in theory T; U T».
@ F must be quantifier-free.
@ Signatures X; of the combined theory only share =, i.e.,

21 NYy = {:}

© Theories must be stably infinite.

Note:
@ Algorithm can be extended to combine arbitrary number of theories T; —
combine two, then combine with another, and so on.

@ We restrict F to be conjunctive formula — otherwise convert to DNF and
check each disjunct.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

5/32

Stably Infinite Theories £

Problem: The T;/Ty-interpretations must have the same data domain;
it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)

A Y-theory T is stably infinite iff
for every quantifier-free -formula F:
if F is T-satisfiable
then there exists some infinite T-interpretation that satisfies F with infinite

cardinality.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 6 /32

Example: Stably Infinite g

Tz: stably infinite (all T-interpretations are infinite).

Tq: stably infinite (all T-interpretations are infinite).

Te: stably infinite (one can add infinitely many fresh and distinct values).
Y-theory T with ¥ : {a,b,=} and axiom Vx. x = a V x = b:

not stable infinite,
since every T-interpretation has at most two elements.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 7/32

Example: £ and X5 g

Consider quantifier-free conjunctive (Xg U Xz)-formula
F: 1<xAx<2Af(x)#f(1)Af(x)#f(2).

The signatures of Tg and Tz only share =. Also, both theories are stably infinite.
Hence, the NO combination of the decision procedures for Tg and Ty decides the
(Te U Tyz)-satisfiability of F.

Fis (Te U Tz)-unsatisfiable:

The first two literals imply x = 1 V x = 2 so that f(x) = f(1) V f(x) = f(2).
This contradicts last two literals.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 8 /32

N-O Overview g

Phase 1: Variable Abstraction
@ Given conjunction I in theory T1 U To5.
@ Convert to conjunction ;1 U 'y s.t.

o [;in theory T;
o 1 U I, satisfiable iff [satisfiable.

Phase 2: Check

@ If there is some set S of equalities and disequalities between the shared
variables of 1 and 'y
shared(I'1,2) = free(l'1) N free(I)
s.t. S UT; are T;-satisfiable for all i,
then T is satisfiable.

@ Otherwise, unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 9 /32

Nelson-Oppen Method: Overview &

Consider quantifier-free conjunctive (X; U ¥»)-formula F.
Two versions:
@ nondeterministic — simple to present, but high complexity

@ deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:

@ Phase 1 (variable abstraction)
— same for both versions

@ Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality propagation

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 10 / 32

Phase 1: Variable abstraction g

Given quantifier-free conjunctive (X U Xp)-formula F.
Transform F into two quantifier-free conjunctive formulae

> 1-formula F and 2 »-formula F>

s.t. Fis (T1 U Ty)-satisfiable iff F; A Fp is (T1 U Tp)-satisfiable
F1 and F> are linked via a set of shared variables.

For term ¢, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 11 / 32

Generation of F; and F

For i,j € {1,2} and i # j, repeat the transformations
Q if function f € ¥; and hd(t) € ¥,

Flf(ty,...,t,...,tn)] egsat. F[f(tr,...,w,....th))] Aw =t

@ if predicate p € ¥; and hd(t) € ¥,
Flp(ti,...,t,...,ta)] egsat. Flp(t1,...,w,....tn))] Aw =t

@ if hd(s) € X, and hd(t) € X,
Fls = t] egsat. F[T]Aw=sAw=1

© if hd(s) € X, and hd(t) € X,
Fls # t] egsat. Flwi # wa] Awy = sAwp =t

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

12 /32

Example: Phase 1
Consider (Xg U Xz)-formula
F:1<xAx<2Af(x)#f(1)AFf(x)#f(2).
According to transformation 1, since f € Yg and 1 € Xz, replace (1) by f(w1)
and add wy = 1. Similarly, replace f(2) by f(w») and add wp, = 2.
Now, the literals
Fz: {1<x,x<2,wm =1 w =2}
are Ty-literals, while the literals
Me: {F(x) # F(m), F(x) # F(wn)}
are Tg-literals. Hence, construct the X -formula
Fi: 1<xAx<2Awg =1Aw =2
and the X g-formula
B F(x) # Fw) A F(x) £ F(wa)

Fi and F; share the variables {x, wy, w2}.
Fi A Fyis (Tg U Tz)-equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

13 / 32

Example: Phase 1 &

Consider (Xg U Xz)-formula
F: f(x)=x+yAx<y+zAx+z<yANy=1AfFf(x)#f(2).
In the first literal, hd(f(x)) = f € Xg and hd(x + y) = + € Xz; thus, by (3),
replace the literal with
wi = fF(x)Awp = x+y.
In the final literal, f € g but 2 € ¥y, so by (1), replace it with
f(x) # f(wa) A wp = 2.
Now, separating the literals results in two formulae:
F:wm=x4+4yAx<y+zAx+z<yANy=1Awm =2
is a Xz-formula, and
Fo o wi = f(x) A f(x) # f(ws)
is a X g-formula.

The conjunction F1 A Fy is (Tg U Ty)-equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 14 / 32

Phase 2: Guess and Check (Nondeterministic) &

@ Phase 1 separated (X1 U Xp)-formula F into two formulae:
> 1-formula F; and Xs-formula F>

@ F1 and F; are linked by a set of shared variables:
V' = shared(F1, F2) = free(F1) N free(F2)

Let E be an equivalence relation over V.
The arrangement a(V, E) of V induced by E is:

a(V,E) : /\ u=vA /\ u#v

uyv € V. uEv u,v € V. =(uEv)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 15 / 32

Correctness of Phase 2 g

The original formula F is (T1 U Ty)-satisfiable iff
there exists an equivalence relation E of V s.t.
(1) F1 A o(V, E) is Ty-satisfiable, and
(2) Fa A oV, E) is Ty-satisfiable.

Proof:
= If Fis (Ty U T,)-satisfiable, then F; A Fp is (T1 U T)-satisfiable,
hence there is a T1 U Tp-Interpretation | with | = F1 A Fp.

Define E C V x Vwithu E viffl E u=v.

Then E is a equivalence relation.

By definition of E and o(V,E), | &= a(V,E).

Hence | = A A a(V,E)and | = Fo A a(V,E).

Thus, these formulae are T1- and Tp-satisfiable, respectively.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 16 / 32

< Let /1 and /, be T1- and Tp-interpretations, respectively, with

I '= Fi A Oc(\/7 E) and b }: F A Oz(\/7 E)

W.l.o.g. assume that o [=](v, w) iff v = w iff o, [=](v, w).

(Otherwise, replace D;, with Dy, /ay[=])

Since Ty and T3 are stably infinite, we can assume that Dy, and D, are of the
same cardinality.

Since i = «(V,E) and b = a(V,E), for x,y € V:
oy [X] = (1[1[_)/] iff alz[x] = alz[y]'

Construct bijective function g : Dy, — Dy, with g(ay, [x]) = ay,[x] for all
x € V. Define | as follows: Dy = Dy,

] = apXl(= glan[x) for x € V,

a[=)(v,w) iff v = w,

Oz/[fg] = alg[fQ] for f2 € Yo,

arlfl(vi,- .-, va) = glay[al(e (1), ..,g 7 (va))) for A € Z3.

Then I is a T; U To-interpretation, and satisfies F; A F».
Hence F is Ty U Ty-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 17 / 32

Example: Phase 2 g

Consider (Xg U Xz)-formula

F: 1< xAx<2Af(x)#f(1)Af(x)#f(2)
Phase 1 separates this formula into the ¥ z-formula

Fi: 1< xAx<2Awi =1Aw =2
and the ¥ g-formula

Fy : f(x) # f(wi) A f(x) # f(wn)
with

V = shared(F1, F2) = {x,w1,wr}

There are 5 equivalence relations to consider, which we list by stating the partitions:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 18 / 32

Example: Phase 2 (cont) g

QO {{x,wi,wo}} ie, x = w = wy:
x = wy and f(x) # f(w1) = F2 A a(V, E) is Tg-unsatisfiable.
Q@ {{x,wmi},{m}}, ie, x = w1, x # wa:
x = wi and f(x) # f(w1) = F2 A a(V, E) is Te-unsatisfiable.
Q {{x,wmo},{m}} ie, x = wy, x # wy:
x = wp and f(x) # f(w2) = F> A a(V, E) is Te-unsatisfiable.
QO {{x},{wi,wmr}}, ie, x # w1, w1 = wy:
wi =wrandwg = 1 Aw =2
= F1 A a(V,E) is Tz-unsatisfiable.
Q@ {{x}, {mi},{we}}, ie, x # w1, x # wo, wi # wa:
xZwmAxFEwandx = wy; =1V x=w =2
(since 1 < x < 2impliesthat x = 1V x = 2in Tz) = F1 A o(V,E) is
Tz-unsatisfiable.
Hence, F is (Tg U Tz)-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 19 / 32

Example: Phase 2 (cont) g

Consider the (Xcons U Xz)-formula 2%
F : car(x) + car(y) = z A cons(x,z) # cons(y, z) .
After two applications of (1), Phase 1 separates F into the ¥ ons-formula
Fi : wi = car(x) A wa = car(y) A cons(x,z) # cons(y, z)
and the ¥ z-formula
Fo:owvi+w =2z,
with
V = shared(F1, F2) = {z, w1, wo} .
Consider the equivalence relation E given by the partition
{{z}, {wa}, {wa}} .
The arrangement a(V,E) : z # w1 Az # wa A wi # wa
satisfies both F; and F: F1 A a(V/, E) is Teons-satisfiable, and F, A a(V, E) is
Tz-satisfiable.
Hence, F is (Tcons U Tz)-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 20 / 32

Practical Efficiency g

Phase 2 was formulated as “guess and check”:
First, guess an equivalence relation E,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared
variables. It is given by Bell numbers.

e.g., 12 shared variables = over four million equivalence relations.

Solution: Deterministic Version

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 21 /32

Deterministic Version

Phase 1 as before

Phase 2 asks the decision procedures P; and P, to propagate new equalities.

Example 1:

Real linear arithmethic T

F :

Jochen Hoenicke (Software Engineering)

Decision Procedures

Theory of equality Tg

F(F)—f(¥) # f(z2) A x<y Ny+z<x AN0<z

Summer 2013

22 /32

Phase 1: Variable Abstraction

F: f(f(x)—f(y)) #f(z) N x<y ANy+z<x AN0<z

Fre: {f(w) # f(2), u = f(x), v="~f(y)} ... Te-formula
lR: {x<y,y+z<x,0<z, w=u-—v} ... Tgp-formula

shared(I'r,Mg) = {x,y,z,u,v,w}

Nondeterministic version — over 200 Es!
Let's try the deterministic version.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

23 /32

Phase 2: Equality Propagation

so: (Tr,Te, {})
kR Ex=y
s (Me,TE, {x = y})
lEU{x=y}lFu=v
s (Tr,Te {x = y,u = v})
rRU{u=v}lEz=w

S3 1 <rR7rE7{X =Yy,u=yv,z = W}>
e U{z = w} [= false

sy : false
Contradiction. Thus, F is (Tr U Tg)-unsatisfiable.

If there were no contradiction, F would be (Tg U Tg)-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

24 / 32

Convex Theories

Definition (convex theory)

A X-theory T is convex iff
for every quantifier-free conjunction ¥-formula F
n

and for every disjunction \/(u,- = v)
i=1

if F = \/(u, = V)

then F |= ui = v;, forsomei € {1,...,n}

BURG

Su

Equality propagation is a decision procedure for convex theories

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2013

25 / 32

Convex Theories

o Tg, Tr, Tg, Tcons are convex
@ Ty, Ta are not convex

Example: Tz is not convex
Consider quantifier-free conjunctive

F: 1<z A

Then

but

Jochen Hoenicke (Software Engineering)

z<2 AN u=1

F = z=u
F Ez=v

Decision Procedures

Summer 2013 26 / 32

Example:

The theory of arrays Tp is not convex.
Consider the quantifier-free conjunctive ¥ p-formula

F: a(iav)jj]=v.

Then
F=i=jvaj] =v,
but
F#Ai=j
F # a[j] = v.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

27 / 32

What if T is Not Convex?

Case split when:
F): \/(U,’ = V,')
i=1
but

M u=v foralli =1,...

@ Foreach /i = 1,...,n, construct a branch on which
u; = v; is assumed.

o If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2013

28 / 32

Example 2: Non-Convex Theory g
e
Ty not convex! TEg convex e

f(2) } in T, U T

IN

\H\\.N

_ 1 < x, X
a {f(x £ F(1), f(x

~—

@ Replace f(1) by f(wy), and add wy = 1.
@ Replace f(2) by f(ws), and add wy = 2.

Result:
1 < x,
_) x=2 _] f(x) # f(w),
Y wm=n Y TES { F(x) # Fwn)
Wy = 2

shared(l'z,Mg) = {x, w1, ws}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 29 /32

Example 2: Non-Convex Theory &

so: Mz, Te, {})
FZ|:X:W1 V X = wp

X =w X = W
st <rZ7rE7{X = W1}> S3 ! <|_Z’|_E,{X = W2}>
52 - 1 S4 . 1

All leaves are labeled with L. = Tis (Tz U Tg)-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 30/ 32

Example 3: Non-Convex Theory &
x, x < 3, .
5)) | TUTe
@ Replace f(1) by f(w1), and add wy = 1.
@ Replace f(2) by f(w), and add wy = 2
@ Replace f(3) by f(w3), and add w3 = 3

Result:
1 < x,
x <3, f(x) # f(w),
Mz =4¢ w =1, and g =< f(x) # f(ws),
wyr = 2, f(wr) # f(wo)
w3 = 3

shared(lz,Tg) = {x, w1, wr, w3}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 31/32

Example 3: Non-Convex Theory

So - <rz, FE, {}>

MlZEXx=w VXx=w V x=ws

X = W3

51 <rz,rE,{X = W1}> 53 . <I‘Z,F57{x = W2}> Y/ <rz,rE,{X = W3}>
MNe U {X = W3} ': 1

rEU{X:W;[}):J_

s L

No more equations on middle leaf = I"is (Tz U Tg)-satisfiable.

Jochen Hoenicke (Software Engineering)

Decision Procedures

S5

L

Summer 2013

32/ 32

	Nelson-Oppen Theory Combination

