Sommersemester 2013

Real-Time Systems

http://swt.informatik.uni-freiburg.de/teaching/SS2013/rtsys

Exercise Sheet 5

Early submission: Tuesday, 2013-07-02, 10:00 Regular submission: Wednesday, 2013-07-03, 10:00

Exercise 1: Regions

(3/20 Points)

Figure 1: Partial Indication of Regions.

Recall that we started to indicate the equivalence classes on clock valuations of $X = \{x, y\}$ in the graph shown in Figure 1. A point (p, q) in the graph represents the unique clock valuation $\{x \mapsto p, y \mapsto q\}$. The equivalence classes shown in Figure 1 are actually not correct.

- What is wrong? Why is it wrong? (The correct equivalence classes are in the book [2]). (3)
- Outline which equivalence classes we get if we have $c_x = 2$. (2)

As usual, convince the tutors of the correctness of your proposal.

Exercise 2: Region Construction [2]

Figure 2: Timed Automaton for Exercise 2.

Consider the timed automaton \mathcal{A} in Figure 2. In the tutorial, we had the impression that location ℓ_2 is not reachable. Prove this statement by constructing the region automaton.

Hint: you need not present all configurations of $\mathcal{R}(\mathcal{A})$ if you explain why the ones, that you do present, are sufficient for the exercise.

Figure 3: Zone φ_0 for Exercise 3.

Exercise 3: Zone Construction [2]

Compute

(3/20 Points)

(5+5/20 Points)

 $\operatorname{Post}_e(\ell_0, z)$

for the zone φ_0 given by Figure 3 and for both edges originating at ℓ_0 ; give the intermediate steps up to φ_5 .

What can you conclude about the reachability of ℓ_1 and ℓ_2 ? You may represent zones graphically or symbolically.

Exercise 4: Deadlock

 (i) Please give (possibly from (correctly cited) literature) an exact formal definition of deadlock in Uppaal [1], i.e. please explain (formally) using the notions and definitions from the lecture when exactly a network of timed automata satisfies

${\tt E} <> {\tt deadlock}.$

Consider the following examples:

Do they have a deadlock according to your definition? And according to Uppaal (i.e., what does Uppaal's deadlock check yield)? (3/5) (ii) How does deadlock relate to timelock? (1/5)

- (iii) What is checking for deadlocks good for? (1/5)
- (iv) Can Uppaal check for timelock? What would checking for timelock be good for? (5 Bonus)

Exercise 5: Model-Checking with Uppaal (4/20 Points)

Consider the Off/Light/Bright model from Exercise Sheet 4.

(i)	Use the model checker to verify whether the original user can reach the Bright location. $(1/4)$
(ii)	Use the model checker to verify that your modified user from Sheet 4, Exercise 2, part (iii) cannot reach the Bright location as requested. $(1/4)$
(iii)	Check whether the original user is able to keep the lamp at location Bright for more than 5 time units. $(1/4)$
(iv)	Check whether the original user is able to switch the lamp to Bright twice. $(1/4)$
Explain your approach.	

References

- [1] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark, November 2004.
- [2] Ernst-Rüdiger Olderog and Henning Dierks. *Real-Time Systems Formal Specification and Automatic Verification*. Cambridge University Press, 2008.