Real-Time Systems

Lecture 02: Timed Behaviour

2013-04-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- Motivation, Overview

This Lecture:

- **Educational Objectives:**
 - Get acquainted with one (simple but powerful) formal model of timed behaviour.
 - See how first order predicate-logic can be used to state requirements.

- **Content:**
 - Time-dependent State Variables
 - Requirements and System Properties in first order predicate logic
 - Classes of Timed Properties
Recall: Prerequisites

To design a (gas burner) controller that meets its requirements we need:

- A formal model of behavior in (quantitative) time
- A language to concisely, conveniently specify requirements on timed behavior
- A language to specify behavior of controllers
- A notion of "meet" and a methodology to verify (prove) meeting.
Real-Time Behaviour, More Formally...
State Variables (or Observables)

- We assume that the real-time systems we consider is characterised by a finite set of state variables (or observables)

\[\text{obs}_1, \ldots, \text{obs}_n \]

each equipped with a domain \(D(\text{obs}_i), 1 \leq i \leq n \).

- Example: gas burner

\begin{itemize}
 \item "gas valve open/closed"
 \item "flame yes/no"
 \item "ignition going on yes/no"
 \item "heating need yes/no"
\end{itemize}

\begin{align*}
 \text{G}, & \quad D(\text{G}) = \{0,1\}, \quad 0 \text{ iff valve closed} \\
 \text{F}, & \quad D(\text{F}) = \{0,1\}, \quad 0 \text{ iff no flame} \\
 \text{I}, & \quad D(\text{I}) = \{0,1\}, \quad 0 \text{ iff no ignition} \\
 \text{H}, & \quad D(\text{H}) = \{0,1\}, \quad 0 \text{ iff no need}
\end{align*}
System Evolution over Time

- One possible evolution (or behaviour) of the considered system over time is represented as a function

\[\pi : \text{Time} \rightarrow \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n). \]

- If (and only if) observable \(obs_i \) has value \(d_i \in \mathcal{D}(obs_i) \) at time \(t \in \text{Time} \), \(1 \leq i \leq n \), we set

\[\pi(t) = (d_1, \ldots, d_n). \]

- For convenience, we use

\[obs_i : \text{Time} \rightarrow \mathcal{D}(obs_i) \]

to denote the projection of \(\pi \) onto the \(i \)-th component.
What’s the time?

- There are two main choices for the time domain Time:
 - **discrete time**: $\text{Time} = \mathbb{N}_0$, the set of natural numbers.
 - **continuous or dense time**: $\text{Time} = \mathbb{R}_0^+$, the set of non-negative real numbers.

- Throughout the lecture we shall use the **continuous** time model and consider **discrete** time as a special case.

Because
 - plant models usually live in **continuous** time,
 - we avoid too early introduction of hardware considerations,

- **Interesting view**: continuous-time is a well-suited **abstraction** from the discrete-time realms induced by clock-cycles etc.
One possible evolution of considered system over time is represented as function

$$\pi : \text{Time} \to D(\text{obs}_1) \times \cdots \times D(\text{obs}_n).$$

If (and only if) observable obs_i has value $d_i \in D(\text{obs}_i)$ at time $t \in \text{Time}$, set:

$$\pi(t) = (d_1, \ldots, d_n).$$

For convenience: use $\text{obs}_i : \text{Time} \to D(\text{obs}_i)$.

\[\pi(13) = (0,0,0,0) \]

\[\pi(52) = (1,1,0,0) \]

“For convenience”

$H(13) = 0$

$H(52) = 1$
Example: Gas Burner

Diagram:

- **H**: 1 for a short time, then 0.
- **G**: 1 for a short time, then 0.
- **I**: 1 for a short time, then 0.
- **F**: 1 for a short time, then 0.

Graphs:

- **H**: 1 for a long time, then fluctuates.
- **G**: Fluctuates.
- **I**: Fluctuates.
- **F**: Fluctuates.

Time:

- **H**: 1 for 1 hour, then 0.
- **G**: 1 for 1 hour, then 0.
- **I**: 1 for 1 hour, then 0.
- **F**: 1 for 1 hour, then 0.

Symbols:

- Gas valve
- Flame sensor
- Ignition
Levels of Detail

- Note:
 Depending on the **choice of observables** we can describe a real-time system at various levels of detail.

For instance,
- if the gas valve has different positions, use
 \[D(G) = \{0, 1, 2, 3\} \quad G : \text{Time} \rightarrow \{0, 1, 2, 3\} \]
 (But: \(D(G) \) is never continuous in the lecture, otherwise we had a hybrid system.)

- if the thermostat and the controller are connected via a bus and exchange messages, use
 \[B : \text{Time} \rightarrow \text{Msg}^* \]
 to model the receive buffer as a finite sequence of messages from \(\text{Msg} \).
- etc.
System Properties
Predicate Logic

\[\varphi ::= \text{obs}(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \Rightarrow \varphi_2 \mid \varphi_1 \iff \varphi_2 \]

| \forall t \in \text{Time} \cdot \varphi | \forall t \in [t_1 + c_1, t_2 + c_2] \cdot \varphi

\text{obs} \text{ an observable, } d \in D(\text{obs}), t \in \text{Var} \text{ logical variable, } c_1, c_2 \in \mathbb{R}_0^+ \text{ constants.}

Example:

\[\forall t \in \text{Time} \cdot \neg \text{G}(t) \Rightarrow \neg \text{F}(t) \]

\[\forall t \in \text{Time} \cdot \text{H}(t) \Rightarrow \exists t' \in [t, t + 100] \cdot \text{I}(t') \]

we can't control the flow so if this is a requirement by the controller, we use \(I(t') \).
Predicate Logic

\[\varphi ::= obs(\downarrow) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \Rightarrow \varphi_2 \mid \varphi_1 \iff \varphi_2 \mid \forall t \in \text{Time} \bullet \varphi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi \]

obs an observable, \(d \in D(\text{obs}) \), \(t \in \text{Var} \) logical variable, \(c_1, c_2 \in \mathbb{R}_0^+ \) constants.

We assume the **standard semantics** interpreted over system evolutions

\[\text{obs}_i : \text{Time} \to D(\text{obs}), 1 \leq i \leq n. \]

That is, given a particular system evolution \(\pi \) and a formula \(\varphi \), we can tell whether \(\pi \) satisfies \(\varphi \) under a given valuation \(\beta \), denoted by \(\pi, \beta \models \varphi \).
Recall: Predicate Logic, Standard Semantics

Evolution of system over time:

\[\pi : \text{Time} \to D(\text{obs}_1) \times \cdots \times D(\text{obs}_n). \]

Iff \(\text{obs}_i \) has value \(d_i \in D(\text{obs}_i) \) at \(t \in \text{Time} \), set:

\[\pi(t) = (d_1, \ldots, d_n). \]

For convenience: use \(\text{obs}_i : \text{Time} \to D(\text{obs}_i). \)

\[\varphi ::= \text{obs}(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \Rightarrow \varphi_2 \mid \varphi_1 \iff \varphi_2 \]

\(\varphi \): \text{Time} \bullet \varphi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi

\[\beta : \text{Var} \to \text{Time} \]

- Let \(\beta : \text{Var} \to \text{Time} \) be a valuation of the logical variables.
- \(\pi, \beta \models \text{obs}_i(t) = d \) iff \(\text{obs}_i(\beta(t)) = d \)
- \(\pi, \beta \models \neg \varphi \) iff \(\neg \pi, \beta \models \varphi \)
- \(\pi, \beta \models \varphi_1 \lor \varphi_2 \) iff ...
- \(\pi, \beta \models \varphi_1 \land \varphi_2 \) iff ...
- \(\pi, \beta \models \forall t \in \text{Time} \bullet \varphi \) iff for all \(t \in \text{Time} \), \(\pi, \beta[t \mapsto t] \models \varphi \)
- \(\pi, \beta \models \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi \) iff for all \(t_0 \in [\beta(t_1) + c_1, \beta(t_2) + c_2], \) \(\pi, \beta[t \mapsto t_0] \models \varphi \)

\[\varphi : \beta = \{ x \mapsto 2 \} \]

- Modification of \(\beta \), since \(t \) is mapped to \(t_0 \), rest unchanged.
- \(X(\beta(x)) = X(2) = 1 \)
- \(\pi, \beta' \models X(2) = 1 \)
- \(\pi, \beta' \models \varphi \)
Predicate Logic

Note: we can view a closed predicate logic formula φ as a **concise description** of

$$\{\pi : \text{Time} \rightarrow D(\text{obs}_1) \times \cdots \times D(\text{obs}_n) \mid \pi, \emptyset \models \varphi\},$$

the set of all system evolutions satisfying φ.

For example,

$$\forall t \in \text{Time} \bullet \neg(I(t) \land \neg G(t))$$

describes all evolutions where there is no ignition with closed gas valve.
So we can use first-order predicate logic to formally specify requirements.

A requirement ‘Req’ is a set of system behaviours with the pragmatics that, whatever the behaviours of the final implementation are, they shall lie within this set. For instance,

\[
\text{Req} : \iff \forall t \in \text{Time} \bullet \neg (\text{I}(t) \land \neg \text{G}(t))
\]

says: “an implementation is fine as long as it doesn’t ignite without gas in any of its evolutions”.

We can also use first-order predicate logic to formally describe properties of the implementation or design decisions. For instance,

\[
\text{Des} : \iff \forall t \in \text{Time} \bullet \text{I}(t) \implies \forall t' \in [t - 1, t + 1] \bullet \text{G}(t')
\]

says that our controller opens the gas valve at least 1 time unit before ignition and keeps it open.
Correctness

• Let ‘Req’ be a requirement,
• ‘Des’ be a design, and
• ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of \((\text{Time} \rightarrow \times_{i=1}^{n} D(\text{obs}_i)) \), described in any form.

We say
• ‘Des’ is a correct design (wrt. ‘Req’) if and only if
 \[\text{Des} \subseteq \text{Req}. \]
• ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if
 \[\text{Impl} \subseteq \text{Des} \quad (\text{or} \quad \text{Impl} \subseteq \text{Req}) \]

If ‘Req’ and ‘Des’ are described by formulae of first-order predicate logic, proving the design correct amounts to proving that ‘Des \implies \text{Req}’ is valid.
Classes of Timed Properties
A **safety property** states that *something bad must never happen* [Lamport].

Example: train inside level crossing with gates open.

More general, assume observable $C : \text{Time} \rightarrow \{0, 1\}$ where $C(t) = 1$ represents a critical system state at time t.

Then

$$\forall t \in \text{Time} \cdot \neg C(t)$$

is a safety property.

In general, a safety property is characterised as a property that can be **falsified** in bounded time.

But safety is not everything...
Liveness Properties

- The simplest form of a **liveness property** states that *something good eventually does happen*.

- Example: gates open for road traffic.

- More general, assume observable $G : \text{Time} \rightarrow \{0, 1\}$ where $G(t) = 1$ represents a good system state at time t.

 Then
 $$\exists t \in \text{Time} \bullet G(t)$$

 is a liveness property.

- Note: not falsified in finite time.

- With real-time, liveness is too weak...
A **bounded response property** states that the desired reaction on an input occurs in time interval \([b, e]\).

Example: from request to secure level crossing to gates closed.

More general, re-consider good thing \(G : \text{Time} \rightarrow \{0, 1\}\) and request \(R : \text{Time} \rightarrow \{0, 1\}\).

Then

\[\forall t_1 \in \text{Time} \bullet (R(t_1) \implies \exists t_2 \in [t_1 + 10, t_1 + 15] \bullet G(t_2))\]

is a bounded liveness property.

This property can again be falsified in finite time.

With gas burners, this is still not everything...
A duration property states that for observation interval \([b, e]\) characterised by a condition \(A(b, e)\) the accumulated time in which the system is in a certain critical state has an upper bound \(u(b, e)\).

Example: leakage in gas burner.

More general, re-consider critical thing \(C' : \text{Time} \rightarrow \{0, 1\}\).

Then \(\forall b, e \in \text{Time} \bullet \left(A(b, e) \implies \int_b^e C(t) \, dt \leq u(b, e)\right)\) is a duration property.

This property can again be falsified in finite time.
References
References