Real-Time Systems

Lecture 03: Duration Calculus I

2013-04-23

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:
- Model of timed behaviour: state variables and their interpretation
- First order predicate-logic for requirements and system properties

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus formulae.

- **Content:**
 - Classes of requirements (safety, liveness, etc.)
 - Duration Calculus:
 - Assertions, Terms, Formulae, Abbreviations, Examples
Recall: Correctness
Recall: Correctness

- Let ‘Req’ be a **requirement**,.
- ‘Des’ be a **design**, and
- ‘Impl’ be an **implementation**.

Recall: each is a set of evolutions, i.e. a subset of \((\text{Time} \rightarrow \times_{i=1}^{n} \mathcal{D}(obs_i))\), described in any form.

We say
- ‘Des’ is a **correct design** (wrt. ‘Req’) if and only if
 \[
 \text{Des} \subseteq \text{Req}.
 \]
- ‘Impl’ is a **correct implementation** (wrt. ‘Des’ (or ‘Req’)) if and only if
 \[
 \text{Impl} \subseteq \text{Des} \quad \text{(or } \text{Impl} \subseteq \text{Req})
 \]

If ‘Req’ and ‘Des’ are described by formulae of first-order predicate logic, proving the design correct amounts to proving that ‘Des \implies \text{Req}’ is valid.
Classes of Timed Properties
A **safety property** states that

something bad must never happen [Lamport].

Example: train inside level crossing with gates open.

\[C, \{0,1\} \]

More general, assume observable \(C : \text{Time} \rightarrow \{0, 1\} \) where \(C(t) = 1 \) represents a critical system state at time \(t \).

Then

\[\forall t \in \text{Time} \cdot \neg C(t) \]

is a safety property.

In general, a safety property is characterised as a property that can be **falsified** in bounded time.

But safety is not everything...
Liveness Properties

- The simplest form of a **liveness property** states that *something good eventually does happen*.

- Example: gates open for road traffic.

- More general, assume observable \(G : \text{Time} \rightarrow \{0, 1\} \) where \(G(t) = 1 \) represents a good system state at time \(t \).

 Then

 \[\exists t \in \text{Time} \bullet G(t) \]

 is a liveness property.

- Note: not falsified in finite time.

- With real-time, liveness is too weak...
Bounded Response Properties

- A **bounded response property** states that the desired reaction on an input occurs in time interval $[b, e]$.

- Example: from request to secure level crossing to gates closed.

- More general, re-consider good thing $G : \text{Time} \rightarrow \{0, 1\}$ and request $R : \text{Time} \rightarrow \{0, 1\}$.

 Then

 $$\forall t_1 \in \text{Time} \bullet (R(t_1) \implies \exists t_2 \in [t_1 + 10, t_1 + 15] \bullet G(t_2))$$

 is a bounded liveness property.

- This property can again be falsified in finite time.

- With gas burners, this is still not everything...
Duration Properties

- A **duration property** states that for observation interval \([b, e]\) characterised by a condition \(A(b, e)\) the **accumulated time** in which the system is in a certain critical state has an upper bound \(u(b, e)\).

- Example: leakage in gas burner.

![Diagram](image-url)
A **duration property** states that for observation interval \([b, e]\) characterised by a condition \(A(b, e)\) the accumulated time in which the system is in a certain critical state has an upper bound \(u(b, e)\).

- Example: leakage in gas burner.

- More general, re-consider critical thing \(C : \text{Time} \to \{0, 1\}\).

Then

\[
\forall b, e \in \text{Time} \bullet \left(A(b, e) \implies \int_b^e C(t) \, dt \leq u(b, e) \right)
\]

is a duration property.

- This property can again be falsified in finite time.

\[
\begin{align*}
\text{guarantees:} & \quad A(b, e) := e - b \geq 60 \\
& \quad u(b, e) := \frac{e - b}{20} - \frac{1}{20}(e - b)
\end{align*}
\]
Duration Calculus
Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Back to our gas burner:
- \(G, F, I, H : \text{Time} \rightarrow \{0, 1\} \)
- Define \(L : \text{Time} \rightarrow \{0, 1\} \) as \(G \land \neg F \).

Strangest operators:
- **everywhere** — Example: \(\lceil G \rceil \)
 (Holds in a given interval \([b, e]\) iff the gas valve is open almost everywhere.)
- **chop** — Example: \((\lceil \neg I \rceil ; [I] ; \lceil \neg I \rceil) \implies \ell \geq 1 \)
 (Ignition phases last at least one time unit.)
- **integral** — Example: \(\ell \geq 60 \implies \int L \leq \frac{\ell}{20} \)
 (At most 5% leakage time within intervals of at least 60 time units.)
Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) Symbols:
\[f, g, \text{true}, \text{false}, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d \]

(ii) State Assertions:
\[P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2 \]

(iii) Terms:
\[\theta ::= x \mid e \mid \int P \mid f(\theta_1, \ldots, \theta_n) \]

(iv) Formulae:
\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2 \]

(v) Abbreviations:
\[[], [P], [P]^t, [P]^{\leq t}, \diamond F, \square F \]
Symbols: Syntax

• \(f, g \): function symbols, each with arity \(n \in \mathbb{N}_0 \).
 Called constant if \(n = 0 \).
 Assume: constants 0, 1, \cdots \in \mathbb{N}_0; \) binary ‘+’ and ‘.’.

• \(p, q \): predicate symbols, also with arity.
 Assume: constants true, false; binary =, <, >, ≤, ≥.

• \(x, y, z \in \text{GVar} \): global variables.

• \(X, Y, Z \in \text{Obs} \): state variables or observables, each of a data type \(D \)
 (or \(D(X), D(Y), D(Z) \) to be precise).
 Called boolean observable if data type is \(\{0, 1\} \).

• \(d \): elements taken from data types \(D \) of observables.
Symbols: Semantics

- **Semantical domains** are
 - the **truth values** \(\mathbb{B} = \{tt, ff\} \),
 - the **real numbers** \(\mathbb{R} \),
 - **time** \(\text{Time} \),
 (mostly \(\text{Time} = \mathbb{R}_0^+ \) (continuous), exception \(\text{Time} = \mathbb{N}_0 \) (discrete time))
 - and **data types** \(\mathcal{D} \).

- The semantics of an \(n \)-ary **function symbol** \(f \)
is a (mathematical) function from \(\mathbb{R}^n \) to \(\mathbb{R} \), denoted \(\hat{f} \), i.e.

\[
\hat{f} : \mathbb{R}^n \to \mathbb{R}.
\]

- The semantics of an \(n \)-ary **predicate symbol** \(p \)
is a function from \(\mathbb{R}^n \) to \(\mathbb{B} \), denoted \(\hat{p} \), i.e.

\[
\hat{p} : \mathbb{R}^n \to \mathbb{B}.
\]

- For constants (arity \(n = 0 \)) we have \(\hat{f} \in \mathbb{R} \) and \(\hat{p} \in \mathbb{B} \).
The semantics of the function and predicate symbols assumed above is fixed throughout the lecture:

- \(\text{true} = \text{tt}, \text{false} = \text{ff} \)
- \(\hat{0} \in \mathbb{R} \) is the (real) number zero, etc.
- \(\hat{+} : \mathbb{R}^2 \to \mathbb{R} \) is the addition of real numbers, etc.
- \(\hat{=} : \mathbb{R}^2 \to \mathbb{B} \) is the equality relation on real numbers,
- \(\hat{<} : \mathbb{R}^2 \to \mathbb{B} \) is the less-than relation on real numbers, etc.

“Since the semantics is the expected one, we shall often simply use the symbols 0, 1, +, \cdot, =, < when we mean their semantics \(\hat{0}, \hat{1}, \hat{+}, \hat{\cdot}, \hat{=}, \hat{<} \).”
Symbols: Semantics

- The semantics of a **global variable** is not fixed (throughout the lecture) but given by a **valuation**, i.e. a mapping

\[\mathcal{V} : \text{GVar} \rightarrow \mathbb{R} \]

assigning each global variable \(x \in \text{GVar} \) a real number \(\mathcal{V}(x) \in \mathbb{R} \).

We use \(\text{Val} \) to denote the set of all valuations, i.e. \(\text{Val} = (\text{GVar} \rightarrow \mathbb{R}) \).

Global variables are though **fixed over time** in system evolutions.

- The semantics of a **state variable** is **time-dependent**.
 It is given by an interpretation \(\mathcal{I} \), i.e. a mapping

\[\mathcal{I} : \text{Obs} \rightarrow (\text{Time} \rightarrow \mathcal{D}) \]

assigning each state variable \(X \in \text{Obs} \) a function

\[\mathcal{I}(X) : \text{Time} \rightarrow \mathcal{D}(X) \]

such that \(\mathcal{I}(X)(t) \in \mathcal{D}(X) \) denotes the value that \(X \) has at time \(t \in \text{Time} \).
Symbols: Representing State Variables

- For convenience, we shall abbreviate $I(X)$ to $X_I : \text{Time} \rightarrow D(X)$, e.g., T_I.

- An interpretation (of a state variable) can be displayed in form of a timing diagram.

For instance,

$$X_I : \quad D(X)$$

with $D(X) = \{d_1, d_2\}$.

$$X_I(t) = \begin{cases} d_2 & \text{if } t \in [0, 5) \\ d_1 & \text{if } t \in (5, 8] \\ d_2 & \text{otherwise} \end{cases}$$
Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) **Symbols:**

\[f, g, \text{ true, false, } =, <, >, \leq, \geq, \ x, y, z, \ X, Y, Z, \ d \]

(ii) **State Assertions:**

\[P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2 \]

(iii) **Terms:**

\[\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \ldots, \theta_n) \]

(iv) **Formulae:**

\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2 \]

(v) **Abbreviations:**

\[[], [P], [P]^t, [P]^{\leq t}, \Diamond F, \Box F \]
The set of **state assertions** is defined by the following grammar:

\[P ::= 0 | 1 | X = d | \neg P_1 | P_1 \land P_2 \]

with \(d \in D(X) \).

We shall use \(P, Q, R \) to denote state assertions.

Abbreviations:
- We shall write \(X \) instead of \(X = 1 \) if \(D(X) = \{0,1\} \).
- Define \(\lor, \implies, \iff \) as usual.
State Assertions: Semantics

- Given an evolution \mathcal{I}.
- The semantics of state assertion P is a function

$$\mathcal{I}[P] : \text{Time} \rightarrow \{0, 1\}$$

i.e. $\mathcal{I}[P](t)$ denotes the truth value of P at time $t \in \text{Time}$.

- The value is defined **inductively** on the structure of P:

$$\mathcal{I}[0](t) = 0 \in \mathbb{R}, \quad \hat{0} = 0$$

$$\mathcal{I}[1](t) = 1 \in \mathbb{R}$$

$$\mathcal{I}[X = d](t) = \begin{cases} 1, & \text{if } X(t) = d \\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{I}[\neg P_1](t) = 1 - \mathcal{I}[P_1](t)$$

$$\mathcal{I}[P_1 \land P_2](t) = \begin{cases} 1, & \text{if } \mathcal{I}[P_1](t) = \mathcal{I}[P_2](t) = 1 \\ 0, & \text{otherwise} \end{cases}$$
State Assertions: Notes

- $\mathcal{I}[X](t) = \mathcal{I}[X = 1](t) = \mathcal{I}(X)(t) = X_\mathcal{I}(t)$, if X boolean, i.e. $\mathcal{D}(X) = \{0, 1\}$

- $\mathcal{I}[P]$ is also called **interpretation** of P.

 We shall write $P_\mathcal{I}$ for it.

- Here we prefer 0 and 1 as boolean values (instead of tt and ff) — for reasons that will become clear immediately.
State Assertions: Example

- Boolean observables G and F.
- State assertion $L := G \land \neg F$.

Interpretation of state variables F, G.

Interpretation of state assertion L.

- $L_\mathcal{I}(1, 2) = 1$, because

\[\mathcal{I}[L](1, 2) = \mathcal{I}[G \land \neg F](1, 2) = \mathcal{I}[L](1, 2) = 1 \]

- $L_\mathcal{I}(2) = 0$, because

\[\mathcal{I}[\neg F](1, 2) = 0 \]
References
References