Contents & Goals

Last Lecture:
- DC Syntax and Semantics: Terms, Formulae

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus formulae – including abbreviations.
 - What is Validity/Satisfiability/Realisability for DC formulae?
 - How can we prove a design correct?

- Content:
 - Duration Calculus Abbreviations
 - Basic Properties
 - Validity, Satisfiability, Realisability
 - A correctness proof for a gas busier design
Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) **Symbols:**

\[f, g, \text{true, false, } =, <, \leq, \geq, \text{ x, y, z, X, Y, Z, } d \]

(ii) **State Assertions:**

\[P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2 \]

(iii) **Terms:**

\[\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \ldots, \theta_n) \]

(iv) **Formulae:**

\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2 \]

(v) **Abbreviations:**

\[[] , \ [P] , \ [P]^i , \ [P]^{\leq i} , \ \Diamond F , \ \Box F \]
Remark 2.10. [Rigid and chop-free] Let F be a duration formula, I an interpretation, V a valuation, and $[b, e] \in \text{Intv}.$

- If F is rigid, then
 \[
 \forall [b', e'] \in \text{Intv} : I[\llbracket F \rrbracket](V, [b, e]) = I[\llbracket F \rrbracket](V, [b', e']).
 \]

- If F is chop-free or θ is rigid, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

Example:
\[
\begin{align*}
\ell = 3; \theta = 5 & \quad \theta = 3; \theta = 5 \\
\ell > 0 \land \ell > 1 & \quad \ell > 1 \land \ell > 2 \quad \text{chop-free}
\end{align*}
\]

Substitution Lemma

Lemma 2.11. [Substitution]
Consider a formula F, a global variable x, and a term θ such that F is chop-free or θ is rigid.

Then for all interpretations I, valuations V, and intervals $[b, e]$,
\[
I[\llbracket F[x := \theta] \rrbracket](V, [b, e]) = I[\llbracket F \rrbracket](V[x := d], [b, e])
\]
where $d = I[\llbracket \theta \rrbracket](V, [b, e]).$
Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

\[f, g, \text{true}, \text{false}, =, <, >, \leq, \geq, \ x, y, z, \ X, Y, Z, \ d \]

(ii) **State Assertions:**

\[P ::= 0 \ | \ 1 \ | \ X = d \ | \ \neg P_1 \ | \ P_1 \land P_2 \]

(iii) **Terms:**

\[\theta ::= x \ | \ \ell \ | \ \int P \ | \ f(\theta_1, \ldots, \theta_n) \]

(iv) **Formulae:**

\[F ::= p(\theta_1, \ldots, \theta_n) \ | \ \neg F_1 \ | \ F_1 \land F_2 \ | \ \forall x \bullet F_1 \ | \ F_1 ; F_2 \]

(v) **Abbreviations:**

\[[\], \ [P], \ [P]^t, \ [P]^{\leq t}, \ \Diamond F, \ \Box F \]

Duration Calculus Abbreviations
Abbreviations

- $[\ell] := \ell = 0$ (point interval)
- $[P] := \{P = 0\} \land \ell > 0$ (almost everywhere)
- $[P]^t := [P] \land \ell = t$ (for time t)
- $[P]^{\leq t} := [P] \land \ell \leq t$ (up to time t)

- $\Diamond F := \text{true} \land F \land \text{true}$ (for some subinterval)
- $\Box F := \neg \Diamond \neg F$ (for all subintervals)

Abbreviations: Examples
Duration Calculus: Looking back

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Back to our gas burner:
- \(G, F, I, H, \quad \mathcal{D}(G) = \cdots = \mathcal{D}(H) = \{0, 1\} \)
- Define \(L \) as \(G \land \neg F \).

Strangest operators:
- **everywhere** — Example: \([G]\)
 (Holds in a given interval \([b, e]\) iff the gas valve is open almost everywhere.)
- **chop** — Example: \([\neg I; I; \neg I]\) \implies \ell \geq 1
 (Ignition phases last at least one time unit.)
- **integral** — Example: \(\ell \geq 60 \implies \int L \leq \frac{\ell}{20} \)
 (At most 5% leakage time within intervals of at least 60 time units.)

DC Validity, Satisfiability, Realisability
Validation, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$") iff $\mathcal{I}[F](\mathcal{V}, [b, e]) = \text{tt}.$
- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V}, [b, e]$.
- $\mathcal{I}, \mathcal{V} \models F$ ("\mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \text{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ ("\mathcal{I} realises F") iff $\forall \mathcal{V} \in \text{Val} : \mathcal{I}, \mathcal{V} \models F$.
- $\models F$ ("F is valid") iff \forall interpretation $\mathcal{I} : \mathcal{I} \models F$.

Remark 2.13. For all DC formulae F,

- F is satisfiable iff $\neg F$ is not valid,
 F is valid iff $\neg F$ is not satisfiable.

- If F is valid then F is realisable, but not vice versa.

- If F is realisable then F is satisfiable, but not vice versa.
Examples: Valid? Realisable? Satisfiable?

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ (**F holds** in $\mathcal{I}, \mathcal{V}, [b, e]$) iff $\mathcal{I} [F](\mathcal{V}, [b, e]) = \text{tt}$.
- F is called **satisfiable** iff it holds in some $\mathcal{I}, \mathcal{V}, [b, e]$.
- $\mathcal{I}, \mathcal{V} \models F$ (**\mathcal{I} and \mathcal{V} realise F**) iff $\forall [b, e] \in \text{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.
- $\models F$ (**\mathcal{I} realises** F) iff $\forall \mathcal{V} \in \text{Val} : \mathcal{I}, \mathcal{V} \models F$.
- $\models F$ (**F is valid**) iff \forall interpretation $\mathcal{I} : \mathcal{I} \models F$.

<table>
<thead>
<tr>
<th>$\ell \geq 0$</th>
<th>Satisfiable</th>
<th>Realisable</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell = 1$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\ell = 30$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\ell = 20$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\ell < 0$</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Initial Values

- $\mathcal{I}, \mathcal{V} \models_0 F$ (**\mathcal{I} and \mathcal{V} realise F from 0**) iff $\forall t \in \text{Time} : \mathcal{I}, \mathcal{V}, [0, t] \models F$.
- F is called **realisable from 0** iff some \mathcal{I} and \mathcal{V} realise F from 0.

- Intervals of the form $[0, t]$ are called **initial intervals**.

- $\mathcal{I} \models_0 F$ (**\mathcal{I} realises** F from 0) iff $\forall \mathcal{V} \in \text{Val} : \mathcal{I}, \mathcal{V} \models_0 F$.
- $\models_0 F$ (**F is valid from 0**) iff \forall interpretation $\mathcal{I} : \mathcal{I} \models_0 F$.
Initial or not Initial...

For all interpretations \mathcal{I}, valuations \mathcal{V}, and DC formulae F,

(i) $\mathcal{I}, \mathcal{V} \models F$ implies $\mathcal{I}, \mathcal{V} \models^0 F$, but not vice versa,

(ii) if F is realisable then F is realisable from 0, but not vice versa,

(iii) F is valid iff F is valid from 0.

Specification and Semantics-based Correctness Proofs of
Real-Time Systems with DC
Methodology: Ideal World...

(i) Choose a collection of observables 'Obs'.
(ii) Provide the requirement/specification 'Spec' as a conjunction of DC formulae (over 'Obs').
(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
(iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

\[\models_0 \text{Ctrl} \implies \text{Spec}. \]

Gas Burner Revisited

(i) Choose observables:
- two boolean observables \(G \) and \(F \)
 (i.e. \(\text{Obs} = \{G, F\}, \mathcal{D}(G) = \mathcal{D}(F) = \{0, 1\} \))
- \(G = 1 \): gas valve open (output)
- \(F = 1 \): have flame (input)
- define \(L := G \land \neg F \) (leakage)

(ii) Provide the requirement:

\[\text{Req} : \iff \Box (\ell \geq 60) \implies \forall \ell \left(L \leq \ell \right) \]
Gas Burner Revisited

(iii) Provide a description ‘Ctrl’ of the controller in form of a DC formula (over ‘Obs’).

Here, firstly consider a design:

- Des-1 : \(\iff \Box([L] \implies \ell \leq 1) \)
- Des-2 : \(\iff \Box([L]; [-L]; [L] \implies \ell > 30) \)

(iv) Prove correctness:
- We want (or do we want \(\models_0 \) ...?):
 \(\models (\text{Des}-1 \land \text{Des}-2 \implies \text{Req}) \)

 \[
 \text{Thm. 2.16}
 \]

- We do show
 \(\models \text{Req}-1 \implies \text{Req} \)

 \[
 \text{Lem. 2.17}
 \]

 with the simplified requirement
 \(\text{Req}-1 := \Box(\ell \leq 30 \implies \ell \leq 1), \)

- and we show
 \(\models (\text{Des}-1 \land \text{Des}-2) \implies \text{Req}-1. \)

 \[
 \text{Lem. 2.19}
 \]
References