- 05 - 2013-05-07 - main -

Real-Time Systems

Lecture 05: Duration Calculus III

2013-05-07

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• DC Syntax and Semantics: Terms, Formulae

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus formulae including abbreviations.
 - What is Validity/Satisfiability/Realisability for DC formulae?
 - How can we prove a design correct?
- Content:
 - Duration Calculus Abbreviations
 - Basic Properties
 - Validity, Satisfiability, Realisability
 - · A correctness proof for a gas busher design

3/36

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F ::= p(heta_1,\ldots, heta_n) \mid
eg F_1 \mid F_1 \wedge F_2 \mid orall \, x ullet F_1 \mid F_1$$
 ; F_2

(v) Abbreviations:

$$\lceil \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \lozenge F, \quad \Box F$$

- 05 - 2013 05 07 - Sdeferm -

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b,e] \in Intv$.

• If F is **rigid**, then

$$\forall \, [b',e'] \in \mathsf{Intv} : \mathcal{I}\llbracket F \rrbracket (\mathcal{V},[b,e]) = \mathcal{I} \llbracket F \rrbracket (\mathcal{V},[b',e']).$$

does not OCCW inF

• If F is **chop-free** or θ is **rigid**, then in the calculation of the semantics of F,

every occurrence of θ_{i} denotes the same value.

eg.
$$\int_{\Omega} \frac{f(x)}{x^3} \int_{\Omega} \frac{f(x)}{x^5} dx$$

5/36

Substitution Lemma

Lemma 2.11. [Substitution]

Consider a formula F, a global variable x, and a term θ such that F is **chop-free** or θ is **rigid**.

Then for all interpretations \mathcal{I} , valuations \mathcal{V} , and intervals [b, e],

$$\mathcal{I}[\![F[x:=\theta]]\!](\mathcal{V},[b,e]) = \mathcal{I}[\![F]\!](\mathcal{V}[x:=d],[b,e])$$

$$F := (\ell, x)$$

$$f \neq f$$

$$f = 0$$
of assignment
$$f = (\ell, x)$$

$$f = 0$$

$$f =$$

· IT+[x:=0]](V, (e,b])=IT(=1, (=1=) (=2 e](V, (e,s])=# if e<b

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

$$f,g, \quad true, false, =, <, >, \leq, \geq, \quad x,y,z, \quad X,Y,Z, \quad d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(heta_1,\ldots, heta_n)\mid
eg F_1\mid F_1\wedge F_2\mid orall\, xullet F_1\mid F_1$$
 ; F_2

(v) Abbreviations:

$$\lceil \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \lozenge F, \quad \Box F$$

7/36

Duration Calculus Abbreviations

Abbreviations

• $\lceil \rceil := \ell = 0$ (point interval)

• $\lceil P \rceil := (f P) = \ell \land \ell > 0$ (almost everywhere)

• $\lceil P \rceil^t := \lceil P \rceil \land \ell = t$ (for time t)

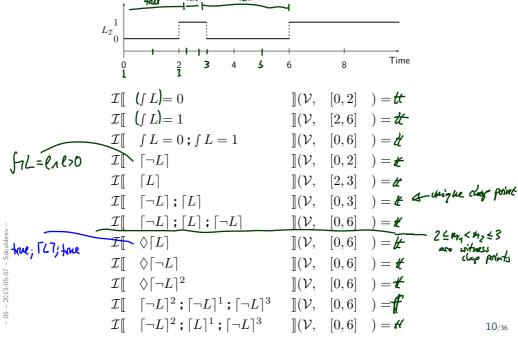
• $\lceil P \rceil^{\leq t} := \lceil P \rceil \land \ell \leq t$ (up to time t)

• $\Diamond F := true$; F; true (for some subinterval)

• $\Box F := \neg \Diamond \neg F$ (for all subintervals)

9/36

Abbreviations: Examples

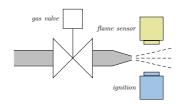


Duration Calculus: Looking back

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Back to our gas burner:

- G, F, I, H, $\mathcal{D}(G) = \cdots = \mathcal{D}(H) = \{0, 1\}$
- Define L as $G \wedge \neg F$.



- Strangest operators: everywhere Example: $\lceil G \rceil$ (Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)
 - **chop** Example: $\mathbb{I}([\neg I] : [I] : [\neg I]) \implies \ell \geq 1$ (Ignition phases last at least one time unit.)
 - integral Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)

11/36

DC Validity, Satisfiability, Realisability

Validity, Satisfiability, Realisability

Let $\mathcal I$ be an interpretation, $\mathcal V$ a valuation, [b,e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ ("I and \mathcal{V} realise F") iff $\forall [b,e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b,e] \models F.$
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ (" \mathcal{I} realises F") if

 $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models F.$

• $\models F$ ("F is valid") iff

 \forall interpretation $\mathcal{I}: \mathcal{I} \models F$.

13/36

Validity vs. Satisfiability vs. Realisability

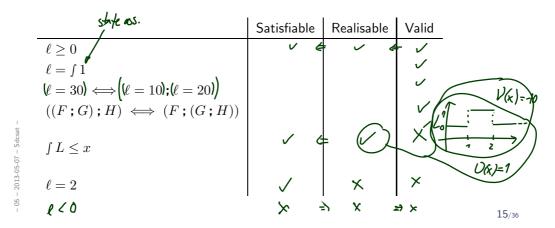
Remark 2.13. For all DC formulae F,

- F is satisfiable iff $\neg F$ is not valid, F is valid iff $\neg F$ is not satisfiable.
- If F is valid then F is realisable, but not vice versa.
- ullet If F is realisable then F is satisfiable, but not vice versa.

- 05 - 2013-05-07 - Sdcsat -

Examples: Valid? Realisable? Satisfiable?

• $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\qquad \qquad \mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \operatorname{tt}.$ • F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V}, [b, e].$ • $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\qquad \forall [b, e] \in \operatorname{Intv}: \mathcal{I}, \mathcal{V}, [b, e] \models F.$ • F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
• $\mathcal{I} \models F$ (" \mathcal{I} realises F") iff $\qquad \forall \mathcal{V} \in \operatorname{Val}: \mathcal{I}, \mathcal{V} \models F.$ • $\models F$ ("F is valid") iff $\qquad \forall \text{ interpretation } \mathcal{I}: \mathcal{I} \models F.$



Initial Values

- $\mathcal{I}, \mathcal{V} \models_0 F$ (" \mathcal{I} and \mathcal{V} realise F from 0") iff $\forall \, t \in \mathsf{Time} : \mathcal{I}, \mathcal{V}, [0,t] \models F.$
- F is called **realisable from** 0 iff some \mathcal{I} and \mathcal{V} realise F from 0.
- Intervals of the form [0,t] are called **initial intervals**.
- $\mathcal{I} \models_0 F$ (" \mathcal{I} realises F from 0") iff $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models_0 F$.
- $\models_0 F$ ("F is valid from 0") iff \forall interpretation $\mathcal{I} : \mathcal{I} \models_0 F$.

For all interpretations \mathcal{I} , valuations \mathcal{V} , and DC formulae F,

- (i) $\mathcal{I}, \mathcal{V} \models F$ implies $\mathcal{I}, \mathcal{V} \models_0 F$, but not vice versa,
- (ii) if F is realisable then F is realisable from 0, but not vice versa,
- (iii) F is valid iff F is valid from 0.

- 05 - 3013 OF 07 - Sdeca+

17/36

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

- 05 - 2013-05-07 - main -

Methodology: Ideal World...

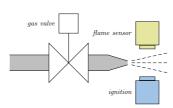
- (i) Choose a collection of observables 'Obs'.
- (ii) Provide the **requirement/specification** 'Spec' as a conjunction of DC formulae (over 'Obs').
- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
- (iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

$$\models_0 \mathsf{Ctrl} \implies \mathsf{Spec}.$$

- 05 - 2013-05-07 - Sdcmeth -

19/36

Gas Burner Revisited



- (i) Choose observables:
 - $\, \bullet \,$ two boolean observables G and F

(i.e. Obs = $\{G, F\}$, $\mathcal{D}(G) = \mathcal{D}(F) = \{0, 1\}$)

• G=1: gas valve open

(output)

• F=1: have flame

(input)

- define $L := G \land \neg F$ (leakage)
- (ii) Provide the requirement:

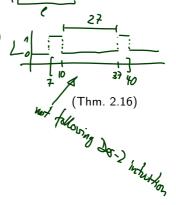
$$\mathsf{Req} : \iff \Box (\ell \geq 60 \implies \mathcal{U} \cap \int L \leq \underbrace{\ell}_{\mathbf{Z_0}}$$

- 05 - 2013-05-07 - Sdegashirper -

Gas Burner Revisited

- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). I[T](V, L7, 10])
 Here, firstly consider a design:
 - Des-1 : $\iff \Box(\lceil L \rceil \implies \ell \le 1)$
 - Des-2 : $\iff \Box(\!(\lceil L \rceil \; ; \lceil \neg L \rceil \; ; \lceil L \rceil)\!) \Longrightarrow \ \ell > 30)$
- (iv) Prove correctness:
 - We want (or do we want $\models_0...$?):

$$\models (\underbrace{\mathsf{Des}\text{-}1 \land \mathsf{Des}\text{-}2} \implies \mathsf{Req})$$



21/36

Gas Burner Revisited

- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:
 - Des-1 : $\iff \Box(\lceil L \rceil \implies \ell \le 1)$
 - Des-2: $\iff \Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$
- (iv) Prove correctness:
 - We want (or do we want $\models_0...?$):

$$\models (\mathsf{Des}\text{-}1 \land \mathsf{Des}\text{-}2 \implies \mathsf{Req})$$
 (Thm. 2.16)

We do show

and we show

$$\models$$
 (Des-1 \land Des-2) \Longrightarrow Reg-1. (Lem. 2.19) $_{21/36}$

35/36

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

- 05 - 2013-05-07 - main -