Real-Time Systems

Lecture 06: DC Properties I

2013-05-08

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:

- DC Syntax and Semantics: Abbreviations ("almost everywhere")
- Satisfiable/Realisable/Valid (from 0)
- Semantical Correctness Proof

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What are obstacles on proving a design correct in the real-world, and how to overcome them?
 - Facts: decidability properties.
 - What's the idea of the considered (un)decidability proofs?

- Content:
 - (Un-)Decidable problems of DC variants in discrete and continuous time
Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC
Methodology: Ideal World...

(i) Choose a collection of **observables** ‘Obs’.

(ii) Provide the **requirement**/**specification** ‘Spec’ as a conjunction of DC formulae (over ‘Obs’).

(iii) Provide a description ‘Ctrl’ of the **controller** in form of a DC formula (over ‘Obs’).

(iv) We say ‘Ctrl’ is **correct** (wrt. ‘Spec’) iff

\[\models_0 \text{Ctrl} \implies \text{Spec}. \]
(i) Choose **observables**:

- two boolean observables G and F

 (i.e. $\text{Obs} = \{G, F\}$, $\mathcal{D}(G) = \mathcal{D}(F) = \{0, 1\}$)

- $G = 1$: gas valve open
- $F = 1$: have flame

- define $L := G \land \neg F$ (leakage)

(ii) Provide the **requirement**:

\[
\text{Req} : \iff \square (\ell \geq 60 \implies 20 \cdot \int L \leq \ell)
\]
(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

- Des-1: $\square([L] \implies \ell \leq 1)$ "phases of leakage have length at most 1"

- Des-2: $\square([L] ; \neg L ; [L] \implies \ell > 30)$ "intervals where L_I looks like $\ppedge{L_I}$ should length bigger than 30"

(iv) Prove correctness:

- We want (or do we want $\models_0...$?):

$$\models (\text{Des-1} \land \text{Des-2} \implies \text{Req})$$

(Thm. 2.16)
(iii) Provide a description ‘Ctrl’ of the controller in form of a DC formula (over ‘Obs’). Here, firstly consider a design:

- Des-1 \iff \Box([L] \implies \ell \leq 1)
- Des-2 \iff \Box([L] ; [\lnot L] ; [L] \implies \ell > 30)

(iv) Prove correctness:

- We want (or do we want \models_0\ldots?):
 \models (\text{Des-1} \land \text{Des-2} \implies \text{Req}) \quad \text{(Thm. 2.16)}

- We do show
 \models \text{Req-1} \implies \text{Req} \quad \text{(Lem. 2.17)}
 \text{with the simplified requirement}

 \text{Req-1} := \Box(\ell \leq 30 \implies \int L \leq 1),

- and we show
 \models (\text{Des-1} \land \text{Des-2}) \implies \text{Req-1.} \quad \text{(Lem. 2.19)}
Claim: for all $\mathcal{I}, \mathcal{V}, [b, e]$
\[
\models \Box (\ell \leq 30 \implies \int L \leq 1) \implies \Box (\ell \geq 60 \implies 20 \cdot \int L \leq \ell)
\]

Proof:

- Assume ‘Req-1’.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and $[b, e]$ an interval with $e - b \geq 60$, let \mathcal{V} a valuation.
- Show “$20 \cdot \int L \leq \ell$”, i.e.
\[
\int_{\mathcal{I}} 20 \cdot \int L \leq \ell \mathcal{B} (V, [b, e]) = \mathcal{A}
\]
i.e.
\[
20 \cdot \int_{b}^{e} L_{\mathcal{I}}(t) \, dt \geq (e - b)
\]
Gas Burner Revisited: Lemma 2.17

- Set \(n := \lceil \frac{e-b}{30} \rceil \), i.e. \(n \in \mathbb{N} \) with \(n - 1 < \frac{e-b}{30} \leq n \), and split the interval

\[
\begin{align*}
&b + 30 & b + 60 & b + 30(n - 2) & b + 30(n - 1) & b + 30n \\
\hline
&b & & & & e
\end{align*}
\]

\[
20 \cdot \int_b^e L_I(t) \, dt = 20 \cdot \left(\sum_{i=0}^{n-2} \int_{b+30i}^{b+30(i+1)} L_I(t) \, dt + \int_{b+30(n-1)}^e L_I(t) \, dt \right)
\]

\[
\{\text{Req-1}\} \leq 20 \cdot \sum_{i=0}^{n-2} 1 + 20 \cdot 1
\]

\[
= 20 \cdot n
\]

\[
\{n-1 < \frac{e-b}{30} \} < 20 \left(\frac{e-b}{30} + 1 \right)
\]

\[
= \frac{2}{3} (e-b) + 20
\]

\[
\leq e-b
\]
Some Laws of the DC Integral Operator

Theorem 2.18
For all state assertions P and all real numbers $r_1, r_2 \in \mathbb{R}$,

(i) $\models \int P \leq \ell$,

(ii) $\models \left((\int P = r_1) \land (\int P = r_2) \right) \implies (\int P = r_1 + r_2)$,

(iii) $\models \neg P \implies \int P = 0$,

(iv) $\models [] \implies \int P = 0$.
Claim:

\[\models (\Box([L] \implies \ell \leq 1) \land \Box([\neg L] ; [L] \implies \ell > 30)) \implies \Box(\ell \leq 30 \implies \int L \leq 1) \]

Proof:

\[\ell \leq 30 \]

\[\Rightarrow \Gamma \]

\[v \Gamma L \cup (\Gamma \cup \Gamma L L) \]

\[v \Gamma L \cup (\Gamma \cup \Gamma L L) \]

\[v \Gamma L \cup (\Gamma \cup \Gamma L L) \]

\[v \ell \leq 30 \land \Diamond([\Gamma L \Gamma L L] ; \Gamma L L) \]

\[\{ \text{Des-2} \} \Rightarrow (\ast) \]

\[\{ \text{Des-1} \} \Rightarrow \Gamma \]

\[v (\ell \leq 1) ; (\Gamma \cup \Gamma L L) \]

\[v \Gamma L \cup (\Gamma \cup L \leq 1) \]

\[v \Gamma L \cup (\Gamma \cup L \leq 1) \]

\[v \ell \leq 30 \land \Diamond([\Gamma L \Gamma L L] ; \Gamma L L) \]

\[\{ \text{iv} \} \Rightarrow \int L = 0 \]

\[v (\ell \leq 0) ; (\ell \leq 0 \lor \ell \leq 0) \]

\[v \ell \leq 1 ; (\ell \leq 0 \lor \ell \leq 1) \]

\[v \ell \leq 0 ; (\ell \leq 0 \lor \ell \leq 0) \]

\[\{ \text{iv} \} \Rightarrow \int L = 0 \]

\[v \ell \leq 1 + 0 \]

\[v \ell \leq 0 + 1 \]

\[v \ell \leq 0 + 1 + 0 \]

\[\Rightarrow \ell \leq 1 \]
Obstacles in Non-Ideal World
Methodology: The World is Not Ideal...

(i) Choose a collection of **observables** ‘Obs’.
(ii) Provide **specification** ‘Spec’ (conjunction of DC formulae (over ‘Obs’)).
(iii) Provide a description ‘Ctrl’ of the **controller** (DC formula (over ‘Obs’)).
(iv) Prove ‘Ctrl’ is **correct** (wrt. ‘Spec’).

That looks **too simple to be practical**. Typical **obstacles**:

(i) It may be impossible to realise ‘Spec’ if it doesn’t consider properties of the **plant**.

(ii) There are typically intermediate **design levels** between ‘Spec’ and ‘Ctrl’.

(iii) ‘Spec’ and ‘Ctrl’ may use **different observables**.

(iv) **Proving** validity of the implication is not trivial.
Obstacle (i): Assumptions As A Form of Plant Model

- Often the controller will (or can) operate correctly only under some **assumptions**.

- For instance, with a level crossing
 - we may assume an upper bound on the speed of approaching trains, (otherwise we’d need to close the gates arbitrarily fast)
 - we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can’t make promises to the road traffic)

- We shall specify such assumptions as a DC formula ‘Asm’ on the **input observables** and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity (from 0) of
 \[Ctrl \land Asm \implies Spec \]

- Shall we **care** whether ‘Asm’ is satisfiable?
 \[Ctrl \land \neg Asm \implies Spec \text{ if Asm not satisfiable} \]
Obstacle (ii): Intermediate Design Levels

- A top-down development approach may involve
 - Spec — specification/requirements
 - Des — design
 - Ctrl — implementation

- Then correctness is established by proving validity of
 \[\text{Ctrl} \implies \text{Des} \]

and

\[\text{Des} \implies \text{Spec} \]
(then concluding \(\text{Ctrl} \implies \text{Spec} \) by transitivity)

- Any preference on the order?
Obstacle (iii): Different Observables

- Assume, ‘Spec’ uses more abstract observables \(\text{Obs}_A \) and ‘Ctrl’ more concrete ones \(\text{Obs}_C \).

- For instance:
 - in \(\text{Obs}_A \): only consider gas valve open or closed \((\mathcal{D}(G) = \{0, 1\}) \)
 - in \(\text{Obs}_C \): may control two valves and care for intermediate positions, for instance, to react to different heating requests \((\mathcal{D}(G_1) = \{0, 1, 2, 3\}, \mathcal{D}(G_2) = \{0, 1, 2, 3\}) \)

- To prove correctness, we need information how the observables are related — an invariant which links the data values of \(\text{Obs}_A \) and \(\text{Obs}_C \).

- If we’re given the linking invariant as a DC formula, say ‘\(\text{Link}_{C,A} \)’, then proving correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving validity (from 0) of

\[
\text{Ctrl} \land \text{Link}_{C,A} \implies \text{Spec}.
\]

- For instance,

\[
\text{Link}_{C,A} = \Box \left(G_1 + G_2 > 0 \right) \land \Box \left(G_1 = 0 \land G_2 = 0 \right)
\]
Obstacle (iv): How to Prove Correctness?

- by hand on the basis of DC semantics,
- maybe supported by proof rules,
- sometimes a general theorem may fit (e.g. cycle times of PLC automata),
- algorithms as in Uppaal.
DC Properties
Recall: Given assumptions as a DC formula ‘Asm’ on the input observables, verifying correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving

\[\models_0 \text{Ctrl} \land \text{Asm} \implies \text{Spec} \] \hspace{1cm} (1)

If ‘Asm’ is not satisfiable then (1) is trivially valid, and thus each ‘Ctrl’ correct wrt. ‘Spec’.

So: strong interest in assessing the satisfiability of DC formulae.

Question: is there an automatic procedure to help us out? (a.k.a.: is it decidable whether a given DC formula is satisfiable?)

More interesting for ‘Spec’: is it realisable (from 0)?

Question: is it decidable whether a given DC formula is realisable?
Decidability Results for Realisability: Overview

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Discrete Time</th>
<th>Continuous Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDC</td>
<td>decidable</td>
<td>decidable</td>
</tr>
<tr>
<td>RDC + $\ell = r$</td>
<td>decidable for $r \in \mathbb{N}$</td>
<td>undecidable for $r \in \mathbb{R}^+$</td>
</tr>
<tr>
<td>RDC + $\int P_1 = \int P_2$</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
<tr>
<td>RDC + $\ell = x, \forall x$</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
<tr>
<td>DC</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
RDC in Discrete Time
Restricted DC (RDC)

\[F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \]

where \(P \) is a state assertion, but with **boolean** observables only.

Note:

- No global variables, thus don’t need \(\cal V \).
- \(\sqcap \) is there
- no \(\exists \) no \(\forall \) (in general)
- no predicate, no function symbols
- \(\diamond F \)...
- \(\sqcap \)...

\[0 \leq x < 1 \mid x = 1 \mid \neg P \mid P, \lor P_2 \]
Discrete Time Interpretations

- An interpretation \mathcal{I} is called \textit{discrete time interpretation} if and only if, for each state variable X,

$$X_\mathcal{I} : \text{Time} \rightarrow D(X)$$

with

- $\text{Time} = \mathbb{R}_0^+$,
- all discontinuities are in \mathbb{N}_0.

![Diagram](image-url)
Discrete Time Interpretations

- An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $$X_\mathcal{I} : \text{Time} \rightarrow \mathcal{D}(X)$$

 with
 - $\text{Time} = \mathbb{R}_0^+$,
 - all discontinuities are in \mathbb{N}_0.

- An interval $[b, e] \subset \text{Intv}$ is called **discrete** if and only if $b, e \in \mathbb{N}_0$.

- We say (for a discrete time interpretation \mathcal{I} and a discrete interval $[b, e]$)

 $$\mathcal{I}, [b, e] \models F_1 ; F_2$$

 if and only if there exists $m \in [b, e] \cap \mathbb{N}_0$ such that

 $$\mathcal{I}, [b, m] \models F_1 \quad \text{and} \quad \mathcal{I}, [m, e] \models F_2$$

 $$\int_b^e \Phi(t) \, dt = (e-b) \quad \land \quad (e-b) > 0$$
Differences between Continuous and Discrete Time

- Let P be a state assertion.

<table>
<thead>
<tr>
<th></th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\models ([P] ; [P])$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\implies [P]$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

[Diagram showing ΓP holds and $\not\Gamma P$ does not hold]

$\not\Gamma P$ does not hold, because $n \cdot b = 0 \neq 0$
Differences between Continuous and Discrete Time

- Let P be a state assertion.

<table>
<thead>
<tr>
<th></th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\models ? ([P]; [P])$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>$\implies [P]$</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>$\models ? [P] \implies ([P]; [P])$</td>
<td>✔</td>
<td>✘</td>
</tr>
</tbody>
</table>

- In particular: $\ell = 1 \iff ([1] \land \neg ([1]; [1]))$ (in discrete time).
Expressiveness of RDC

- $\ell = 1 \iff [1] \land \neg([1];[1])$
- $\ell = 0 \iff \neg[1]$
- $\text{true} \iff \ell = 0 \lor \neg(\ell = 0)$
- $\int P = 0 \iff \top \neg P \lor \ell = 0$
- $\int P = 1 \iff (\int P = 0) ; (\lceil P \rceil \land \ell = 1) ; \int P = 0$
- $\int P = k + 1 \iff (\int P = k) ; (\int P = 1)$
- $\int P \geq k \iff (\int P = k) ; \text{true}$
- $\int P > k \iff \int P \geq k + 1$
- $\int P \leq k \iff \neg(\int P > k)$
- $\int P < k \iff \int P \leq k - 1$

where $k \in \mathbb{N}$.

still

$\forall T : \text{true, } T \text{ share in } \text{RDC}$
Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
RDX formulas F, DT/II.

$F \models I$

Construct \Rightarrow prove \Rightarrow construct

$L(F) \supset w \in \Sigma^* \text{ word}$

regular language
Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F, a regular language $\mathcal{L}(F)$ such that

$$\mathcal{I}, [0, n] \models F \text{ if and only if } w \in \mathcal{L}(F)$$

where word w describes \mathcal{I} on $[0, n]$
(suitability of the procedure: Lemma 3.4)

- then F is satisfiable in discrete time if and only if $\mathcal{L}(F)$ is not empty (Lemma 3.5)

- Theorem 3.6 follows because
 - $\mathcal{L}(F)$ can effectively be constructed,
 - the emptiness problem is decidable for regular languages.
Construction of $\mathcal{L}(F)$

- **Idea:**
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation on an interval of length 1,
 - a word of length n describes an interpretation on interval $[0, n]$.

- **Example:** Assume F contains exactly state variables X, Y, Z, then

$$\Sigma(F) = \{ X \land Y \land Z, X \land Y \land \neg Z, X \land \neg Y \land Z, X \land \neg Y \land \neg Z, \neg X \land Y \land Z, \neg X \land Y \land \neg Z, \neg X \land \neg Y \land Z, \neg X \land \neg Y \land \neg Z \}.$$

$$w = (\neg X \land \neg Y \land \neg Z) \cdot (X \land \neg Y \land \neg Z) \cdot (X \land Y \land \neg Z) \cdot (X \land Y \land Z) \in \Sigma(F)^*$$
Construction of $\mathcal{L}(F)$ more Formally

Definition 3.2. A word $w = a_1 \ldots a_n \in \Sigma(F)^*$ with $n \geq 0$ describes a discrete interpretation \mathcal{I} on $[0,n]$ if and only if

$$\forall j \in \{1, \ldots, n\} \forall t \in]j-1, j[: \mathcal{I}[a_j](t) = 1.$$

For $n = 0$ we put $w = \varepsilon$.

- Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^{m} a_i$ with $a_i \in \Sigma(F)$.
- Set $\text{DNF}(P) := \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$.
- Define $\mathcal{L}(F)$ inductively:

$$\mathcal{L}([P]) = \text{DNF}(P)^+,$$

$$\mathcal{L}(\neg F_1) = \Sigma(F) \setminus \mathcal{L}(F_1),$$

$$\mathcal{L}(F_1 \lor F_2) = \mathcal{L}(F_1) \cup \mathcal{L}(F_2),$$

$$\mathcal{L}(F_1 ; F_2) = \mathcal{L}(F_1), \mathcal{L}(F_2).$$
References
References