Contents & Goals

Last Lecture:
- RDC in discrete time
- Started: Satisfiability and realizability from 0 is decidable for RDC in discrete time

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Facts: (un)decidability properties of DC in discrete/continuous time.
 - What’s the idea of the considered (un)decidability proofs?

- Content:
 - Complete: Satisfiability and realizability from 0 is decidable for RDC in discrete time
 - Undecidable problems of DC in continuous time
Recall: Decidability of Satisfiability/Realisability from 0

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula \(F \), a regular language \(\mathcal{L}(F) \) such that
 \[
 \mathcal{I}, [0, n] \models F \text{ if and only if } w \in \mathcal{L}(F)
 \]
 where word \(w \) describes \(\mathcal{I} \) on \([0, n]\)
 (suitability of the procedure: Lemma 3.4)

- then \(F \) is satisfiable in discrete time if and only if \(\mathcal{L}(F) \) is not empty (Lemma 3.5)

- Theorem 3.6 follows because
 - \(\mathcal{L}(F) \) can effectively be constructed,
 - the emptiness problem is decidable for regular languages.
Construction of $L(F)$

- **Idea:**
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation on an interval of length 1,
 - a word of length n describes an interpretation on interval $[0, n]$.

- **Example:** Assume F contains exactly state variables X, Y, Z, then
 $$\Sigma(F) = \{X \land Y \land Z, X \land Y \land \neg Z, X \land \neg Y \land Z, X \land \neg Y \land \neg Z, \neg X \land Y \land Z, \neg X \land Y \land \neg Z, \neg X \land \neg Y \land Z, \neg X \land \neg Y \land \neg Z\}.$$

$$w = (\neg X \land \neg Y \land \neg Z) \cdot (X \land \neg Y \land \neg Z) \ast \cdot (X \land Y \land \neg Z) \ast \cdot (X \land Y \land Z) \in \Sigma(F)^* \ast \ast \ast \ast \ast \ast \ast$$

Construction of $L(F)$ more Formally

Definition 3.2. A word $w = a_1 \ldots a_n \in \Sigma(F)^*$ with $n \geq 0$ describes a discrete interpretation I on $[0,n]$ if and only if

$$\forall j \in \{1, \ldots, n\} \forall t \in]j - 1, j[: I[a_j](t) = 1.$$

For $n = 0$ we put $w = \varepsilon.$

- Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^m a_i$ with $a_i \in \Sigma(F)$.
- Set $DNF(P) := \{a_1, \ldots, a_m\} \subseteq \Sigma(F)).$
- Define $L(F)$ inductively:
 $$L([P]) = DNF(P)^*, \quad L(\neg F_1) = \Sigma(F)^* \setminus L(F_1),$$
 $$L(F_1 \lor F_2) = L(F_1) \lor L(F_2), \quad L(F_1 ; F_2) = L(F_1) \cdot L(F_2).$$
Lemma 3.4

For all RDC formulae F, discrete interpretations I, $n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe I on $[0, n]$,

$$I, [0, n] \models F \text{ if and only if } w \in L(F).$$

Sketch: Proof of Theorem 3.9

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

- $\text{kern}(L)$ contains all words of L whose prefixes are again in L.
- If L is regular, then $\text{kern}(L)$ is also regular.
- $\text{kern}(L(F))$ can effectively be constructed.
- We have

Lemma 3.8. For all RDC formulae F, F is realisable from 0 in discrete time if and only if $\text{kern}(L(F))$ is infinite.

- Infinity of regular languages is decidable.
Recall: Restricted DC (RDC)

\[F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \]

where \(P \) is a state assertion, but with boolean observables only.

From now on: “RDC + \(\ell = x, \forall x \)”

\[F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1 \]
Theorem 3.10.
The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

- Given a two-counter machine \mathcal{M} with final state q_{fin},
- construct a DC formula $F(\mathcal{M}) := \text{encoding}(\mathcal{M})$
- such that
 \[\mathcal{M} \text{ diverges if and only if } \text{ the DC formula } \]
 \[F(\mathcal{M}) \land \neg \Diamond [q_{\text{fin}}] \]
 \[\text{is realisable from 0}. \]

- If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn't).
Recall: Two-counter machines

A **two-counter** machine is a structure

\[M = (Q, q_0, q_{\text{fin}}, \text{Prog}) \]

where

- \(Q \) is a finite set of **states**,
- comprising the **initial state** \(q_0 \) and the **final state** \(q_{\text{fin}} \)
- \(\text{Prog} \) is the **machine program**, i.e. a finite set of **commands** of the form

\[q : \text{inc}_i : q' \quad \text{and} \quad q : \text{dec}_i : q', q'', \quad i \in \{1, 2\}. \]

- We assume **deterministic** 2CM: for each \(q \in Q \), at most one command starts in \(q \), and \(q_{\text{fin}} \) is the only state where no command starts.

2CM Configurations and Computations

- A **configuration** of \(M \) is a triple \(K = (q, n_1, n_2) \in Q \times \mathbb{N}_0 \times \mathbb{N}_0 \).
- The transition relation \(\vdash \) on configurations is defined as follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: (K \vdash K')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q : \text{inc}_1 : q')</td>
<td>((q, n_1, n_2) \vdash (q', n_1 + 1, n_2))</td>
</tr>
</tbody>
</table>
| \(q : \text{dec}_1 : q', q'' \) | \((q, 0, n_2) \vdash (q', 0, n_2) \)
| \((q, n_1 + 1, n_2) \vdash (q'', n_1, n_2) \) |
| \(q : \text{inc}_2 : q' \) | \((q, n_1, n_2) \vdash (q', n_1, n_2 + 1) \) |
| \(q : \text{dec}_2 : q', q'' \) | \((q, n_1, 0) \vdash (q', n_1, 0) \)
| \((q, n_1, n_2 + 1) \vdash (q'', n_1, n_2) \) |

- The (!) **computation** of \(M \) is a finite sequence of the form \(\text{"} M \text{ halts"} \)

\[K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \cdots \vdash (q_{\text{fin}}, n_1, n_2) \]

or an infinite sequence of the form \(\text{"} M \text{ diverges"} \)

\[K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \cdots \]
2CM Example

- $M = (Q, q_0, q_{fin}, \text{Prog})$
- commands of the form $q : \text{inc}_i : q'$ and $q : \text{dec}_i : q', q''$, $i \in \{1, 2\}$
- configuration $K = (q, n_1, n_2) \in Q \times N_0 \times N_0$

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: $K \vdash K'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : \text{inc}_1 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$</td>
</tr>
<tr>
<td>$q : \text{dec}_1 : q', q''$</td>
<td>$(q, 0, n_2) \vdash (q', 0, n_2)$ $(q, n_1 + 1, n_2) \vdash (q'', n_1, n_2)$</td>
</tr>
<tr>
<td>$q : \text{inc}_2 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1, n_2 + 1)$</td>
</tr>
<tr>
<td>$q : \text{dec}_2 : q', q''$</td>
<td>$(q, n_1, 0) \vdash (q', n_1, 0)$ $(q, n_1, n_2 + 1) \vdash (q'', n_1, n_2)$</td>
</tr>
</tbody>
</table>

Reducing Divergence to DC realizability: Idea In Pictures

2CM diverges if
- $\forall k$ does not occur
- exists $\pi : K_0 \rightarrow K_1 \rightarrow \cdots$
- $\exists I$

FULL) inherently requires:
- $[\pi, d] \text{ encodes } (q_0, 0, 0)$
- $[\pi, d, \text{init}] \text{ encodes a configuration}$
- $[\pi, \text{init}] \text{ and } [\text{init}, d] \text{ encode configurations which are } \rightarrow \text{-related}$
- if q_{fin} is reached, we stay there
Reducing Divergence to DC realizability: Idea

- A single configuration K of \mathcal{M} can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.

- An interpretation on ‘Time’ encodes the computation of \mathcal{M} if
 - each interval $[4n, 4(n+1)]$, $n \in \mathbb{N}_0$, encodes a configuration K_n,
 - each two subsequent intervals $[4n, 4(n+1)]$ and $[4(n+1), 4(n+2)]$, $n \in \mathbb{N}_0$, encode configurations $K_n \vdash K_{n+1}$ in transition relation.

- Being encoding of the run can be characterised by DC formula $F(\mathcal{M})$.

- Then \mathcal{M} diverges if and only if $F(\mathcal{M}) \land \neg \Diamond [q_{\text{fin}}]$ is realisable from 0.

Encoding Configurations

- We use $\text{Obs} = \{\text{obs}\}$ with
 $\mathcal{D}(\text{obs}) = \mathcal{Q}_\mathcal{M} \cup \{C_1, C_2, B, X\}$.

Examples:

- $K = (q, 2, 3)$

 $$
 \begin{align*}
 &\left(\begin{array}{c}
 [q] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 [B] ; [C_1] ; [B] ; [C_1] ; [B] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 [X] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 \land \\
 \ell = 1
 \end{array}\right)
 \end{align*}
 $$

- $K_0 = (q_0, 0, 0)$

 $$
 \begin{align*}
 &\left(\begin{array}{c}
 [q_0] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 [B] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 [X] \\
 \land \\
 \ell = 1
 \end{array}\right) \\
 &\left(\begin{array}{c}
 [B] \\
 \land \\
 \ell = 1
 \end{array}\right)
 \end{align*}
 $$

or, using abbreviations, $[q_0]^1 ; [B]^1 ; [X]^1 ; [B]^1$.

21/33
Construction of $F(M)$

In the following, we give DC formulae describing

- the initial configuration,
- the general form of configurations,
- the transitions between configurations,
- the handling of the final state.

$F(M)$ is the conjunction of all these formulae.

\[
F(M) = \text{init} \land \text{keep} \land \ldots
\]

\[
\land \bigwedge_{q : \text{inc}; y' \in RqM} F(q, \text{inc}; y')
\]

\[
\land \bigwedge_{q : \text{dec}; y \in RqM} F(q, \text{dec}; y)
\]

Initial and General Configurations

\[
\text{init} :\iff (\ell \geq 4 \implies [q_0]^1; [B]^1; [X]^1; [B]^1; \text{true})
\]

\[
\text{keep} :\iff \Box([Q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \implies \ell = 4; [Q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1)
\]

where $Q := \neg(X \lor C_1 \lor C_2 \lor B)$.

\[
\Box \left(\begin{array}{cccc}
[q_0] & [B \lor C_1] & [X] & [B \lor C_2] \\
\ell = 4 & \ell + 1 & \ell + 1 & \ell + 1
\end{array} \right)
\]

\[
\Rightarrow \left(\begin{array}{cccc}
[q_0] & [B \lor C_1] & [X] & [B \lor C_2] \\
\ell = 4 & \ell + 1 & \ell + 1 & \ell + 1
\end{array} \right)
\]
Auxiliary Formula Pattern copy

\[\text{copy}(F, \{P_1, \ldots, P_n\}) : \iff \forall c, d \cdot (F \land \ell = c) ; ([P_1 \lor \cdots \lor P_n] \land \ell = d) ; [P_1] ; \ell = 4 \Rightarrow \ell = c + d + 4 ; [P_1] \]

\[\text{...} \]

\[\forall c, d \cdot (F \land \ell = c) ; ([P_1 \lor \cdots \lor P_n] \land \ell = d) ; [P_n] ; \ell = 4 \Rightarrow \ell = c + d + 4 ; [P_n] \]

\[\forall c, d \cdot (\ell = 4 \Rightarrow \ell = c + d + 4) \]

\[q : \text{inc} \cdot (q) \text{ (Increment)} \in R_q \]

(i) Change state
\[\quad \square([q]^1 ; [B \lor C_1]^1 ; [X]^1 ; [B \lor C_2]^1 ; \ell = 4 \Rightarrow \ell = 4 ; [q]^1 ; \text{true}) \]

(ii) Increment counter
\[\forall d \cdot (\ell = 4 \Rightarrow [q]^1 ; ([B] ; [C_1] ; [B]) \land \ell = d) ; \text{true} \]

\[\forall d \cdot \square([q]^1 ; [B]^d ; \ell = 0 \lor [C_1] ; [-X]) ; [X]^1 ; [B \lor C_2]^1 ; \ell = 4 \Rightarrow \ell = 4 ; [q]^1 ; ([B] ; [C_1] ; [B]) \land \ell = d) ; \text{true} \]

\[\forall d \cdot \square([q]^1 ; [B]^d ; ([B]^d ; [C_1][B]^d) \land [X]^1 ; [B \lor C_2]^1 ; \ell = 4 \Rightarrow \ell = 4 ; [q]^1 ; ([B] ; [C_1] ; [B]) \land \ell = d) ; \text{true} \]

\[\forall d \cdot \square([q]^1 ; [B]^d ; ([B]^d ; [C_1][B]^d) \land [X]^1 ; [B \lor C_2]^1 ; \ell = 4 \Rightarrow \ell = 4 ; [q]^1 ; ([B] \land [C_1] \land [B]) \land \ell = d) ; \text{true} \]
\(q : inc \) : \(q' \) (Increment)

(i) Keep rest of first counter
\[
\begin{array}{c}
\text{copy}(q^1; [B \lor C_1] ; [C_1], \{B, C_1\}) \\
\end{array}
\]

(ii) Leave second counter unchanged
\[
\begin{array}{c}
\text{copy}(q^1; [B \lor C_1] ; [X]^1, \{B, C_2\}) \\
\end{array}
\]

\(q : dec \) : \(q', q'' \) (Decrement)

(i) If zero
\[
\square([q]^1; [B]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \implies \ell = 4; [q']^1; [B]^1; \text{true})
\]

(ii) Decrement counter
\[
\forall d \bullet \square([q]^1; ([B]; [C_1] \land \ell = d); [B]; [B \lor C_1]; [X]^1; [B \lor C_2]^1; \ell = 4 \\
\implies \ell = 4; [q'']^1; [B]^d; \text{true})
\]

(iii) Keep rest of first counter
\[
\text{copy}([q]^1; [B]; [C_1]; [B_1], \{B, C_1\})
\]

(iv) Leave second counter unchanged
\[
\text{copy}([q]^1; [B \lor C_1]; [X]^1, \{B, C_2\})
\]
Satisfiability

• Following [Chaochen and Hansen, 2004] we can observe that
 \(\mathcal{M} \text{ halts if and only if} \) the DC formula \(F(\mathcal{M}) \land \Diamond [q_{\text{fin}}] \) is \textbf{satisfiable}.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.

(It is semi-decidable.)

• Furthermore, by taking the contraposition, we see
 \(\mathcal{M} \text{ diverges if and only if} \) \(\mathcal{M} \) does not \textbf{halt}
 \(\text{if and only if} \) \(F(\mathcal{M}) \land \neg \Diamond [q_{\text{fin}}] \) is \textbf{not} satisfiable.

• Thus whether a DC formula is \textbf{not satisfiable} is not decidable, not even semi-decidable.
Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 (“there is no sound and complete proof system for DC”):
 - **Suppose** there were such a calculus C.
 - By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in C.
 - By the soundness and completeness of C, F is a theorem in C if and only if F is valid.
 - Thus it is semi-decidable whether F is valid. **Contradiction.**

Discussion

- Note: the DC fragment defined by the following grammar is **sufficient** for the reduction

 \[F ::= [P] | \neg F_1 | F_1 \lor F_2 | F_1 ; F_2 | \ell = 1 | \ell = x | \forall x \bullet F_1, \]

 P a state assertion, x a global variable.

- Formulae used in the reduction are abbreviations:

 \[
 \ell = 4 \iff \ell = 1 ; \ell = 1 ; \ell = 1 ; \ell = 1 \\
 \ell \geq 4 \iff \ell = 4 ; true \\
 \ell = x + y + 4 \iff \ell = x ; \ell = y ; \ell = 4
 \]

- Length 1 is not necessary — we can use $\ell = z$ instead, with fresh z.

- This is RDC augmented by “$\ell = x$” and “$\forall x$”, which we denote by $RDC + \ell = x, \forall x$.

References
