Recall: Decidability of Satisfiability/Realisability from 0

Theorem 3.6. The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9. The realisability problem for RDC with discrete time is decidable.

Sketch: Proof of Theorem 3.6

• Give a procedure to construct, given a formula F, a regular language $L(F)$ such that $I, [0,n] \models F$ if and only if $w \in L(F)$ where w describes I on $[0,n]$ (suitability of the procedure: Lemma 3.4)

• Then F is satisfiable in discrete time if and only if $L(F)$ is not empty (Lemma 3.5)

• Theorem 3.6 follows because
 • $L(F)$ can effectively be constructed,
 • the emptiness problem is decidable for regular languages.
Lemma 3.8. We have $F(k, r)$. If F is regular, then L is realisable from 0 in F.

Definition 3.2. For x, y, z basic state variables, F contains exactly state variables.

Lemma 3.4. Construction of RDC in Continuous Time.

(1) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(2) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(3) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(4) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(5) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(6) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(7) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(8) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(9) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(10) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(11) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.

(12) F contains exactly state variables. If F contains exactly state variables, then F can be transformed into an equivalent DNF.
Theorem 3.11. The realizability from 0 problem for DC with final state is undecidable.

Sketch: Proof of Theorem 3.10

Recall: Two-counter machines

- The emptiness problem for DC with final state is decidable.
- The satisfiability problem for DC is decidable.
- The emptiness problem for 2C is undecidable.
- The satisfiability problem for 2C is undecidable.
- The realizability from 0 problem for 2C with final state is undecidable.

Proof: We reduce from the emptiness problem for 2C to the realizability problem for DC with final state.

1. Construct a DC formula ϕ such that if M is a 2C with final state, then ϕ is a DC formula.
2. If M is empty, then ϕ is satisfiable.
3. If M is not empty, then ϕ is not satisfiable.
4. Therefore, the realizability problem for DC with final state is undecidable.

Theorem 3.10. The emptiness problem for DC with final state is decidable.

Proof: We construct a DC formula ψ such that if M is a DC with final state, then ψ is a DC formula.

1. If M is empty, then ψ is a DC formula.
2. If M is not empty, then ψ is not a DC formula.
3. Therefore, the emptiness problem for DC with final state is decidable.

Two-Counter Machines and Configurations

- The emptiness problem for 2C is undecidable.
- The satisfiability problem for 2C is undecidable.
- The realizability problem for 2C with final state is undecidable.

Proof: We reduce from the emptiness problem for 2C to the realizability problem for 2C with final state.

1. Construct a 2C formula ϕ such that if M is a 2C, then ϕ is a 2C formula.
2. If M is empty, then ϕ is a 2C formula.
3. If M is not empty, then ϕ is not a 2C formula.
4. Therefore, the realizability problem for 2C with final state is undecidable.
∀x, RDC
Contradiction. is valid.

Note: the DC fragment defined by the following grammar is not even semidecidable.

Formulae used in the reduction are abbreviations:

\[F \land \neg \Box M (F) \iff \neg F \lor \neg \neg F \leq \neg F \land \neg \neg F \]
\[F \lor \neg \Box M (F) \iff \neg F \land \neg \neg F \leq \neg F \lor \neg \neg F \]
\[F \land \neg \Box M (F) \iff \neg F \lor \neg \neg F \leq \neg F \land \neg \neg F \]
\[F \lor \neg \Box M (F) \iff \neg F \land \neg \neg F \leq \neg F \lor \neg \neg F \]

(i) If zero
\[\neg F \land \neg \neg F \leq \neg F \land \neg \neg F \]
\[\neg F \lor \neg \neg F \leq \neg F \lor \neg \neg F \]

(ii) Decrement counter
\[\neg F \land \neg \neg F \leq \neg F \land \neg \neg F \]
\[\neg F \lor \neg \neg F \leq \neg F \lor \neg \neg F \]

(iii) Increment counter
\[\neg F \land \neg \neg F \leq \neg F \land \neg \neg F \]
\[\neg F \lor \neg \neg F \leq \neg F \lor \neg \neg F \]

Theorem 3.11. This yields fin in M.

Following [Chaochen and Hansen, 2004] the DC formula