Real-Time Systems

Lecture 14: Extended Timed Automata

2013-06-25

Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:
- Decidability of the location reachability problem:
 - region automaton
 - zones

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - By what are TA extended? Why is that useful?
 - What’s an urgent/committed location? What’s the difference?
 - What’s an urgent channel?
 - Where has the notion of “input action” and “output action” correspondences in the formal semantics?

Content:
- Extended TA:
 - Data-Variables
 - Structuring Facilities
 - Restriction of Non-Determinism
 - The Logic of Uppaal
Extended Timed Automata

Example (Partly Already Seen in Uppaal Demo)

Templates:
- \(L \):
 - \(\text{off} \)
 - \(\text{press?} \):
 - \(x := 0 \)
 - \(x > 3 \)
 - \(\text{light} \):
 - \(y := 0 \)
 - \(y < 2 \)
 - \(\text{bright} \):
 - \(v := 1 \)

- \(U \):
 - \(\text{press!} \):
 - \(y := 0 \)
 - \(y > 3 \)

System:
- \(x \) press?
- \(\text{chan press} \)
- \(v \) press!

Extensions:
- Data Variables (Expressions, Constraints, Updates)
- Structuring
- Urgent/Committed Location, Urgent Channel
Data-Variables

• When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables. E.g. count number of open doors, or intermediate positions of gas valve.

• Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straightforward:
 • If we have control locations \(L_0 = \{\ell_1, \ldots, \ell_n\} \),
 • and want to model, e.g., the valve range as a variable \(v \) with \(D(v) = \{0, 1, 2\} \),
 • then just use \(L = L_0 \times D(v) \) as control locations, i.e. encode the current value of \(v \) in the control location, and consider updates of \(v \) in the \(\lambda \rightarrow \).

\(L \) is still finite, so we still have a proper TA.

• But: writing \(\lambda \rightarrow \) is tedious.

• So: have variables as “first class citizens” and let compilers do the work.

• Interestingly, many examples in the literature live without variables: the more abstract the model is, i.e., the fewer information it keeps track of (e.g. in data variables), the easier the verification task.
Data Variables and Expressions

• Let \((v, w) \in V\) be a set of (integer) variables.

 \((\psi_{\text{int}}) \in \Psi(V)\): integer expressions over \(V\) using func. symb. \(+, -, \ldots\)

 \((\varphi_{\text{int}}) \in \Phi(V)\): integer (or data) constraints over \(V\)
 using integer expressions, predicate symbols \(=, <, \leq, \ldots\), and
 boolean logical connectives. (incl. \(v, \neg, \land, \lor, \implies, \equiv\))

• Let \((x, y) \in X\) be a set of clocks.

 \((\varphi) \in \Phi(X, V)\): (extended) guards, defined by

 \[\varphi ::= \varphi_{\text{clk}} \mid \varphi_{\text{int}} \mid \varphi_1 \land \varphi_2 \]

 where \(\varphi_{\text{clk}} \in \Phi(X)\) is a simple clock constraint (as defined before)
 and \(\varphi_{\text{int}} \in \Phi(V)\) an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(a) \(x < y \land v > 2\), (b) \(x < y \lor v > 2\), (c) \(v < 1 \lor v > 2\), (d) \(x < v \leq\)

Modification or Reset Operation

• New: a modification or reset (operation) is

 \[x := 0, \quad x \in X, \]

 or

 \[v := \psi_{\text{int}}, \quad v \in V, \quad \psi_{\text{int}} \in \Psi(V). \]

• By \(R(X, V)\) we denote the set of all resets.

• By \(\bar{r}\) we denote a finite list \((r_1, \ldots, r_n), n \in \mathbb{N}_0\),
 of reset operations \(r_i \in R(X, V)\);
 \((\emptyset)\) is the empty list.

• By \(R(X, V)^*\) we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?

(a) \(x := y\), (b) \(x := v\), (c) \(v := x\), (d) \(v := w\), (e) \(v := 0\)
Structuring Facilities

- Global declarations of clocks, data variables, channels, and constants.
- Binary and broadcast channels: `chan c` and broadcast chan `b`.
- Templates of timed automata.
- Instantiation of templates (instances are called `process`).
- System definition: list of processes.

![Diagram of Structuring Facilities]

Restricting Non-determinism

- **Urgent locations** — enforce local immediate progress.

 ![U]

- **Committed locations** — enforce atomic immediate progress.

 ![C]

- **Urgent channels** — enforce cooperative immediate progress.

  ```
  urgent chan press;
  ```
Urgent Locations: Only an Abbreviation...

Replace

\[
\begin{align*}
\ell & \quad \text{urgent} \\
\varphi \\
\end{align*}
\]

with

\[
\begin{align*}
\ell & \\
z := 0 & \quad \varphi \land z = 0 \\
\end{align*}
\]

where \(z \) is a fresh clock:
- reset \(z \) on all in-going edges,
- add \(z = 0 \) to invariant.

Question: How many fresh clocks do we need in the worst case for a network of \(N \) extended timed automata?

Extended Timed Automata

Definition 4.39. An extended timed automaton is a structure

\[
A_e = (L, C, B, U, X, V, I, E, \ell_{ini})
\]

where \(L, B, X, I, \ell_{ini} \) are as in Def. 4.3, except location invariants in \(I \) are **downward closed**, and where
- \(C \subseteq L \): committed locations,
- \(U \subseteq B \): urgent channels,
- \(V \): a set of data variables,
- \(E \subseteq L \times B \times \Phi(X, V) \times R(X, V)^* \times L \): a set of directed edges such that
 \[
 (\ell, \alpha, \varphi, \vec{r}, \ell') \in E \land \text{chan}(\alpha) \in U \implies \varphi = \text{true}.
 \]

Edges \((\ell, \alpha, \varphi, \vec{r}, \ell')\) from location \(\ell \) to \(\ell' \) are labelled with an action \(\alpha \), a guard \(\varphi \), and a list \(\vec{r} \) of reset operations.
Definition 4.40. Let $A_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i})$, $1 \leq i \leq n$, be extended timed automata with pairwise disjoint sets of clocks X_i.

The operational semantics of $C(A_{e,1}, \ldots, A_{e,n})$ (closed!) is the labelled transition system

$$T_e(C(A_{e,1}, \ldots, A_{e,n})) = (\text{Conf}, \text{Time} \cup \{\tau\}, \{\lambda \mapsto | \lambda \in \text{Time} \cup \{\tau\}\}, C_{ini})$$

where

- $X = \bigcup_{i=1}^{n} X_i$ and $V = \bigcup_{i=1}^{n} V_i$,
- $\text{Conf} = \{ (\vec{\ell}, \nu) | \ell_i \in L_i, \nu: X \cup V \rightarrow \text{Time}, \nu \models \bigwedge_{k=1}^{n} I_k(\ell_k) \}$,
- $C_{ini} = \{ (\vec{\ell}_{ini}, \nu_{ini}) \} \cap \text{Conf}$,

and the transition relation consists of transitions of the following three types.

Helpers: Extended Valuations and Timeshift

- **Now:** $\nu: X \cup V \rightarrow \text{Time} \cup \mathcal{D}(V)$
-Canonically extends to $\nu: \Psi(V) \rightarrow \mathcal{D}$ (valuation of expression).
- “$=$” extends canonically to expressions from $\Phi(X, V)$.

$$\Psi: \nu \mid f(\varphi_1, \ldots, \varphi_n)$$

Assume $I(\ell): \mathbb{Z}^n \rightarrow \mathbb{Z}$

$$I(\ell) = \nu(\vec{\mathcal{V}}) \in \mathcal{D}(V)$$

$I(f(\varphi_1, \ldots, \varphi_n), \nu) = I_f(I(\varphi_1), \ldots, I(\varphi_n))$

$I(\nu+\omega, [\nu_{ini}\nu_{ini}])$

$I(\nu+\omega, [\nu_{ini}\nu_{ini}]) = I\Phi(\varphi_{ini}, \nu_{ini}) \in \mathcal{D}(\nu_{ini} \nu_{ini})$
** Helpers: Extended Valuations and Timeshift **

- **Now:** \(\nu : X \cup V \to \text{Time} \cup \mathcal{D}(V) \)
- Canonically extends to \(\nu : \Psi(V) \to \mathcal{D} \) (valuation of expression).
- “\(= \)” extends canonically to expressions from \(\Psi(X, V) \).
- **Extended timeshift** \(\nu + t, t \in \text{Time} \), applies to clocks only:
 - \((\nu + t)(x) := \nu(x) + t, x \in X \),
 - \((\nu + t)(v) := \nu(v), v \in V \).
- **Effect of modification** \(r \in R(X, V) \) on \(\nu \), denoted by \(\nu[r] \):
 - \(\nu[x := 0](a) := \begin{cases} 0, & \text{if } a = x, \\ \nu(a), & \text{otherwise} \end{cases} \)
 - \(\nu[v := \psi_{\text{int}}](a) := \begin{cases} \nu(\psi_{\text{int}}), & \text{if } a = v, \\ \nu(a), & \text{otherwise} \end{cases} \)
- We set \(\nu(r_1, \ldots, r_n) := \nu[r_1] \cdot \ldots \cdot [r_n] = (((\nu[r_1])[r_2]) \ldots)[r_n] \).

Operational Semantics of Networks: Internal Transitions

- An **internal transition** \(\langle \ell, \nu \rangle \xrightarrow{\tau} \langle \ell', \nu' \rangle \) occurs if there is \(i \in \{1, \ldots, n\} \) such that:
 - there is a \(\tau \)-edge \((\ell_i, \tau, \varphi, r_i', \ell_i') \in E_i \),
 - \(\nu \models \varphi \),
 - \(\ell = \ell[i := \ell_i'] \),
 - \(\nu' = \nu[r] \),
 - \(\nu' \models I_i(\ell_i') \),
 - if \(\ell_k \in C_k \) for some \(k \in \{1, \ldots, n\} \) then \(\ell_i \in C_i \).
Operational Semantics of Networks: Synchronisation Transitions

- A synchronisation transition \(\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell}', \nu' \rangle \) occurs if there are \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) such that
 - there are edges \((\ell_i, b!, \varphi_i, \vec{r}_i, \ell'_i) \in E_i\) and \((\ell_j, b?, \varphi_j, \vec{r}_j, \ell'_j) \in E_j\),
 - \(\nu \models \varphi_i \land \varphi_j \),
 - \(\vec{\ell}' = \vec{\ell} [[\ell_i := \ell'_i] [\ell_j := \ell'_j]] \),
 - \(\nu' = \nu [\vec{r}_i] [\vec{r}_j] \),
 - \(\nu' = I_i (\ell'_i) \land I_j (\ell'_j) \),
 - \((\clubsuit) \) if \(\ell_k \in C_k \) for some \(k \in \{1, \ldots, n\} \) then \(\ell_i \in C_i \) or \(\ell_j \in C_j \).

Operational Semantics of Networks: Delay Transitions

- A delay transition \(\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle \) occurs if
 - \(\nu + t \models \bigwedge_{k=1}^{n} I_k (\ell_k) \),
 - \((\clubsuit) \) there are no \(i, j \in \{1, \ldots, n\} \) and \(b \in U \) with \((\ell_i, b!, \varphi_i, \vec{r}_i, \ell'_i) \in E_i\) and \((\ell_j, b?, \varphi_j, \vec{r}_j, \ell'_j) \in E_j\),
 - \((\clubsuit) \) there is no \(i \in \{1, \ldots, n\} \) such that \(\ell_i \in C_i \).
Restricting Non-determinism: Example

<table>
<thead>
<tr>
<th>Property 1</th>
<th>Property 2</th>
<th>Property 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃◊w = 1</td>
<td>∀□Q.q₁ ⇒ y ≤ 0</td>
<td>∀□(P.p₁ ∧ Q.q₁ ⇒ (x ≥ y ⇒ y ≤ 0))</td>
</tr>
</tbody>
</table>

N := P∥Q∥R	✓	×	×
N, q₁ urgent	✓	✓	✓
N, q₁ comm.	✓	✓	✓
N, b urgent	✓	✓	✓

Restricting Non-determinism: Urgent Location

<table>
<thead>
<tr>
<th>Property 1</th>
<th>Property 2</th>
<th>Property 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃◊w = 1</td>
<td>∀□Q.q₁ ⇒ y ≤ 0</td>
<td>∀□(P.p₁ ∧ Q.q₁ ⇒ (x ≥ y ⇒ y ≤ 0))</td>
</tr>
</tbody>
</table>

N := P∥Q∥R	✓	×	×
N, q₁ urgent	✓	✓	✓
N, q₁ comm.	✓	✓	✓
N, b urgent	✓	✓	✓
Restricting Non-determinism: Committed Location

<table>
<thead>
<tr>
<th>Property 1</th>
<th>Property 2</th>
<th>Property 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists w = 1$</td>
<td>$\forall Q.q_1 \implies y \leq 0$</td>
<td>$\forall(P.p_1 \land Q.q_1 \implies (x \geq y \implies y \leq 0))$</td>
</tr>
<tr>
<td>\mathcal{N}</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>\mathcal{N}, q_1 urgent</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>\mathcal{N}, q_1 comm.</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td>\mathcal{N}, b urgent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restricting Non-determinism: Urgent Channel

<table>
<thead>
<tr>
<th>Property 1</th>
<th>Property 2</th>
<th>Property 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists w = 1$</td>
<td>$\forall Q.q_1 \implies y \leq 0$</td>
<td>$\forall(P.p_1 \land Q.q_1 \implies (x \geq y \implies y \leq 0))$</td>
</tr>
<tr>
<td>\mathcal{N}</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>\mathcal{N}, q_1 urgent</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>\mathcal{N}, q_1 comm.</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td>\mathcal{N}, b urgent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extended vs. Pure Timed Automata

\[A_e = (L, C, B, U, X, V, I, E, \ell_{ini}) \]
\[(\ell, \alpha, \varphi, \vec{r}, \ell') \in L \times B_{\geq} \times \Phi(X, V) \times R(X, V)^* \times L \]

vs.

\[A = (L, B, X, I, E, \ell_{ini}) \]
\[(\ell, \alpha, \varphi, Y, \ell') \in E \subseteq L \times B_{\geq} \times \Phi(X) \times 2^X \times L \]

- \(A_e \) is in fact (or specialises to) a **pure** timed automaton if
 - \(C = \emptyset \),
 - \(U = \emptyset \),
 - \(V = \emptyset \),
 - for each \(\vec{r} = (r_1, \ldots, r_n) \), every \(r_i \) is of the form \(x := 0 \) with \(x \in X \).
 - \(I(\ell), \varphi \in \Phi(X) \) is then a consequence of \(V = \emptyset \).
Operational Semantics of Extended TA

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$C(A_1, \ldots, A_n)$$

and

$$\text{chan } b_1, \ldots, b_m \cdot (A_1 \parallel \ldots \parallel A_n),$$

where \(\{b_1, \ldots, b_m\} = \bigcup_{i=1}^n B_i\), coincide, i.e.

$$\mathcal{T}_c(C(A_1, \ldots, A_n)) = \mathcal{T}(\text{chan } b_1, \ldots, b_m \cdot (A_1 \parallel \ldots \parallel A_n)).$$

Reachability Problems for Extended Timed Automata
Recall

Theorem 4.33. [Location Reachability] The location reachability problem for pure timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for pure timed automata is **decidable**.

- And what about tea ~W **extended** timed automata?

References
References