Real-Time Systems

Lecture 15: The Universality Problem for TBA

2013-07-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:
- Timed Words and Languages [Alur and Dill, 1994]

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata?
 - What’s the idea of the proof?

- Content:
 - Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
 - Why this is unfortunate.
 - Timed regular languages are not everything.
Recall: Timed Languages

Definition. A time sequence \(\tau = \tau_1, \tau_2, \ldots \) is an infinite sequence of time values \(\tau_i \in \mathbb{R}_+^\omega \), satisfying the following constraints:

(i) Monotonicity:
\(\tau \) increases strictly monotonically, i.e. \(\tau_i < \tau_{i+1} \) for all \(i \geq 1 \).

(ii) Progress: For every \(t \in \mathbb{R}_+^\omega \), there is some \(i \geq 1 \) such that \(\tau_i > t \).

Definition. A timed word over an alphabet \(\Sigma \) is a pair \((\sigma, \tau)\) where

- \(\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega \) is an infinite word over \(\Sigma \), and
- \(\tau \) is a time sequence.

Definition. A timed language over an alphabet \(\Sigma \) is a set of timed words over \(\Sigma \).
Recall:

Example: Timed Language

Timed word over alphabet Σ: a pair (σ, τ) where
- $\sigma = \sigma_1, \sigma_2, \ldots$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$L_{\text{cst}} = \{((ab)^\omega, \tau) \mid \exists i \forall j \geq i: (\tau_{2j} < \tau_{2j-1} + 2)\}$

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) \mathcal{A} is a tuple $(\Sigma, S, S_0, X, E, F)$, where
- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.
- $F \subseteq S$ is a set of accepting states.
Example: TBA

\[A = (\Sigma, S, S_0, X, E, F) \]

\[(s, s', a, \lambda, \delta) \in E\]

\[
\begin{align*}
S_1 & \xrightarrow{b} S_0 \\
S_0 & \xrightarrow{a} S_2 \\
S_2 & \xrightarrow{b, x < 2} S_3
\end{align*}
\]

\[
\Sigma = \{a, b\} \\
S = \{s_0, s_1, s_2\} \\
S_0 = \{s_0\} \\
X = \{v_1\} \\
E = \{(s_2, s_3, b, 0, \lambda, \delta)\} \\
F = \{s_3\}
\]

Accepting TBA Runs

Definition. A run \(r \), denoted by \((s, \nu)\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an infinite sequence of the form

\[r : \langle s_0, \nu_0 \rangle \xrightarrow{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\tau_3} \ldots \]

with \(s_i \in S \) and \(\nu_i : X \rightarrow \mathbb{R}_+^+ \), satisfying the following requirements:

- **Initiation:** \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution:** for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \tau_i, \lambda_i, \delta_i)\) such that

 \[\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1})) \text{ satisfies } \delta_i \text{ and } \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]. \]

 Time shift (as before)
Example: TBA

\[A = (\Sigma, S, S_0, X, E, F) \]
\[(s, s', a, \lambda, \delta) \in E \]

```plaintext
(σ, τ) = \( TS \) \( TS' \) \( TS'' \) \( TS''' \) \( TS\)  
\r
r: \( (s_0, x=0) \) \( a \) \( (s_1, x=0) \) \( b \) \( (s_2, x=2) \)
```

Definition. A run \(r \), denoted by \((\bar{s}, \bar{\nu})\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an infinite sequence of the form

\[r : (s_0, \nu_0) \xrightarrow{\sigma_1 / \tau_1} (s_1, \nu_1) \xrightarrow{\sigma_2 / \tau_2} (s_2, \nu_2) \xrightarrow{\sigma_3 / \tau_3} \ldots \]

with \(s_i \in S \) and \(\nu_i : X \rightarrow \mathbb{R}_0^+ \), satisfying the following requirements:

- **Initiation:** \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution:** for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)\) such that
 - \((\nu_{i-1} + (\tau_i - \tau_{i-1})) \) satisfies \(\delta_i \) and
 - \(\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0] \).

The set \(\text{inf}(r) \subseteq S \) consists of those states \(s \in S \) such that \(s = s_i \) for infinitely many \(i \geq 0 \).

Definition. A run \(r = (\bar{s}, \bar{\nu}) \) of a TBA over timed word \((\sigma, \tau)\) is called (an) **accepting** (run) if and only if \(\text{inf}(r) \cap F \neq \emptyset \).
Example: (Accepting) Runs

\[r: \langle s_0, \tau_0 \rangle \xrightarrow{a_{s_1}} \langle s_1, \tau_1 \rangle \xrightarrow{a_{s_2}} \langle s_2, \tau_2 \rangle \xrightarrow{a_{s_3}} \ldots \]

initial and \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E \), s.t. \((\nu_{i-1} + (\tau_i - \tau_{i-1})) = \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1})[\lambda_i := 0]. \)

Accepting iff \(\inf(r) \cap F \neq \emptyset. \)

Timed word: \((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots \)

- Can we construct any run? Is it accepting?
 \[\langle s_0, 0 \rangle \xrightarrow{a} \langle s_1, 1 \rangle \xrightarrow{b} \langle s_2, 2 \rangle \xrightarrow{a} \langle s_3, 3 \rangle \xrightarrow{b} \langle s_4, 4 \rangle \ldots \]

- Can we construct a non-run (get stuck)?
 No

- Can we construct a (non-)accepting run?
 \[\eta: \langle s_0, 0 \rangle \xrightarrow{a} \langle s_1, 1 \rangle \xrightarrow{b} \langle s_2, 2 \rangle \xrightarrow{a} \langle s_3, 3 \rangle \ldots \]
 \(\inf(\eta) = \emptyset \)

The Language of a TBA

Definition. For a TBA \(A \), the language \(L(A) \) of timed words it accepts is defined to be the set

\[\{ (\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau) \}. \]

For short: \(L(A) \) is the language of \(A \).

Definition. A timed language \(L \) is a timed regular language if and only if \(L = L(A) \) for some TBA \(A \).
Example: Language of a TBA

\[L(A) = \{ (\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau) \} . \]

Claim:

\[L(A) = L_{\text{crt}} = \{ ((ab)^{i} \omega , \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2) \} \]

- \(L_{\text{crt}} \subseteq L(A) \): Pick some \((s_0, x) < L(A)\). Construct an accepting run of \(A\).
- \(L(A) \subseteq L_{\text{crt}} \): Pick some \((s_0, x) \in L(A)\). Then there is an accepting run on \((s_0, x)\).

Question: Is \(L_{\text{crt}} \) timed regular or not?

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
The Universality Problem

- **Given**: A TBA \(\mathcal{A} \) over alphabet \(\Sigma \).
- **Question**: Does \(\mathcal{A} \) accept all timed words over \(\Sigma \)?

 In other words: Is \(L(\mathcal{A}) = \{ (\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence} \} \).

\[\Sigma = \{ a, b, c \} \quad \mathcal{A} \quad \text{is universal} \]

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet \(\Sigma \) accepts all timed words over \(\Sigma \) is \(\Pi_1 \)-hard.

(“The class \(\Pi_1 \) consists of highly undecidable problems, including some nonarithmetical sets
(for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let \(\mathcal{B} \) be a Büchi Automaton over \(\Sigma \).\[\text{complement of } \Sigma^\omega \]
- \(\mathcal{B} \) is universal if and only if \(L(\mathcal{B}) = \emptyset \).
- \(\mathcal{B}' \) such that \(L(\mathcal{B}') = \overline{L(\mathcal{B})} \) is effectively computable.
- Language emptiness is decidable for Büchi Automata.
Proof Idea:

Consider a language \(L_{\text{undec}} \) which consists of the recurring computations of a 2-counter machine \(M \).

Construct a TBA \(A \) from \(M \) which accepts the complement of \(L_{\text{undec}} \), i.e. with \(L(A) = \overline{L_{\text{undec}}} \).

Then \(A \) is universal if and only if \(L_{\text{undec}} \) is empty.

...which is the case if and only if \(M \) doesn't have a recurring computation.

Once Again: Two Counter Machines (Different Flavour)

A two-counter machine \(M \)

- has two counters \(C, D \) and
- a finite program consisting of \(n \) instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

A configuration of \(M \) is a triple \(\langle i, c, d \rangle \): program counter \(i \in \{1, \ldots, n\} \), values \(c, d \in \mathbb{N}_0 \) of \(C \) and \(D \).

A computation of \(M \) is an infinite consecutive sequence

\[
\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots
\]

that is, \(\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle \) is a result executing instruction \(i_j \) at \(\langle i_j, c_j, d_j \rangle \).

A computation of \(M \) is called recurring iff \(i_j = 1 \) for infinitely many \(j \in \mathbb{N}_0 \).
Step 1: The Language of Recurring Computations

- Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.
(In particular s.t. $L_{\text{undec}} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.
- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

$$b_1 a_1 \ldots a_1 a_2 \ldots a_2 = b_1 a_1^c a_2^d$$

- For all $j \in \mathbb{N}_0$,
 - the time of b_{ij} is j.
 - if $c_{j+1} = c_j$:
 - for every a_1 at time t in the interval $[j, j+1]$ there is an a_1 at time $t+1$,
 - if $c_{j+1} = c_j + 1$:
 - for every a_1 at time t in the interval $[j+1, j+2]$, except for the last one, there is an a_1 at time $t-1$,
 - if $c_{j+1} = c_j - 1$:
 - for every a_1 at time t in the interval $[j, j+1]$, except for the last one, there is an a_1 at time $t+1$,
- And analogously for the a_2's.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that

$$L(\mathcal{A}) = L_{\text{undec}},$$

i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text{undec}}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_{i_1}a_1^1a_2^{a_1^1b_{i_2}a_1^{a_2^2}}$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$
 is a recurring computation of M.
- the time of b_{i_j} is j.
- if $c_{j+1} = c_j (= c_j + 1, = c_j - 1)$: \ldots

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$A = A_0 \cup A_{\text{init}} \cup A_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} A_i.$$
Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in [j, j+1]$.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

- It accepts

$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}$.
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

- A_{recur} accepts words with only finitely many b_i.

\[b_1 b_2 b_3 \ldots b_i \ldots b_{j+1} b_{j+2} b_{j+3} \ldots \]

\[\begin{align*}
\ell_0 & \quad \text{accepts } b_7 \\
\ell_1 & \quad x := 0 \\
\ell_2 & \quad x < 1 \\
\ell_3 & \quad \neg \sigma_1, x = 1 \\
\ell_4 & \quad x \neq 1
\end{align*} \]

\[\begin{array}{c}
\text{(no rew.)} \\
\text{(no, not accepting)} \\
\text{(no, accepting) \& word is accepted} \\
\text{(no, not accepting) \& word is rejected}
\end{array} \]

Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j+1, j+2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j+1]$.

Example: assume instruction i is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_2 is $A_{12}^1 \cup \cdots \cup A_{12}^6$.

- A_{12}^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j+1$. “Easy to construct.”

- A_{12}^2 is

\[a_1 \]

- A_{12}^3 accepts words which encode unexpected increment of counter C.

- $A_{12}^4, \ldots, A_{12}^6$ accept words with missing increment of D.

\[a_2 \]

\[a_3 \]
Consequences: Language Inclusion

- **Given:** Two TBAs A_1 and A_2 over alphabet B.
- **Question:** Is $L(A_1) \subseteq L(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

- If language inclusion was decidable, then we could use it to decide universality of A by checking

$$L(A_{univ}) \subseteq L(A)$$

where A_{univ} is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

Possible applications of a decision procedure:
- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check
 \[L(A_1) \cap L(A_3) = \emptyset, \]
 that is, whether the design has any non-allowed behaviour.
- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)

Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

If the class of timed regular languages were closed under complementation, “the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

\[
\begin{array}{c}
\begin{tikzpicture}
\node (a1) at (0,0) [circle,draw] {a};
\node (a2) at (1,0) [circle,draw] {a};
\node (a3) at (2,0) [circle,draw] {a};
\node (x1) at (0,-1) [circle,draw] {$x := 0$};
\node (x2) at (1,-1) [circle,draw] {$x = 1$};
\draw (a1) edge [loop above] (a1);
\draw (a1) edge (a2);
\draw (a2) edge (a3);
\end{tikzpicture}
\end{array}
\]

$L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) | \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}$

Complement language:

$\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) | \text{no two } a \text{ are separated by distance 1}\}.$
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:

- There are strictly timed languages than timed regular languages.
- There exists timed languages \(B \) such that there exists no \(A \) with \(L(A) = B \).

Example:

\[\ell_0 \xrightarrow{c} 2x = 3y \xrightarrow{b} \ell_1 \xrightarrow{a, x := 0} \ell_2 \xrightarrow{b, y := 0} \]

\[\{(abc^\omega, \tau) \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\} \]
References
