Real-Time Systems

Lecture 19: Wrapup

2013-07-16

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Content

Introduction

- First-order Logic
- Duration Calculus (DC)
- Semantical Correctness
 Proofs with DC
- DC Decidability
- DC Implementables
- DC Proof Systems

PLC-Automata

- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- Extended Timed Automata
- Undecidability Results (TBA)

Recap

- Automatic Verification...
 ...whether TA satisfies DC formula, observer-based
Tying It All Together

abstraction level

formal description language I

semantic integration

automatic verification

formal descr. language II

Requirements → Duration Calculus → Constraint Diagrams → operational semantics → DC → satisfied by

Designs

- PLC-Automata

Programs

- C code

- PLC code

⇒ ∥

equiv.

timed automata

Live Seq. Charts

equiv.

timed automata

PLC code

compiler

logical semantics

DC

equiv.

PLC-Automata

DC

equiv.

timed automata

logical semantics

operational semantics
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lectures

- **Lecture 01: Introduction**
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 1:

- What is a real-time system?
- In contrast to reactive, hybrid, ...?
- What is a safety-critical system?
- When do we call a real-time system correct?
- What is an approach to the development of correct real-time systems? What prerequisites does it have?
- What could justify this high effort?
- What are hard/soft deadlines?
- How did we partition reactive systems?
- Can you give an example for a “plant” from the tutorials.
- What’s discrete and what’s continuous time? Which did we use and why?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 02:

- **Educational Objectives:**
 - Get acquainted with one (simple but powerful) formal model of timed behaviour.
 - What is the idea of Time-dependent State Variables?
 - What is a timing diagram?
 - Can you formalise this requirement using first order predicate-logic?
 - What classes of timed properties did we distinguish?
 - To what classes of timed properties does this property belong?
 - Why is it useful to consider classes of properties?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Duration Calculus

Lecture 03, 04, 05:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What does this Duration Calculus formula mean? (Intuitively and formally.)
 - Please formalise this requirement/design in DC. (In particular: get the syntax right.)
 - Why is DC called duration calculus? What’s special about DC?
 - What’s an interval logic?
 - What’s the difference between global variables and state variables? What’s their semantics?
 - Is a DC term a DC formula?
 - What’s a rigid term?
 - What does this DC abbreviation “unfold” to?
 - There was the question whether the DC semantics is well-defined. What was the issue and how did we address it?
 - Please give an interpretation of the state variable which satisfies/realises (from 0) this DC formula.
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 06 & 07:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - Facts: decidability properties. What is/is not decidable for (R)DC?
 - Why would a decision procedure for this problem be useful?
 - How is (un)decidability of the hmm problem proved? (What’s the idea of the proof? What steps are conducted? What is established?)
 - What’s RDC? What is it useful for?
 - What’s (R)DC in discrete time?
 - Can we distinguish by a DC formula whether we’re in a discrete or continuous time model?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- **Lecture 08: DC Implementables**
- **Lecture 09: PLC Automata**
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 08:

• **Educational Objectives:** Capabilities for following tasks/questions.
 • What does this standard form mean? Give a satisfying interpretation.
 • What is a control automaton?
 • What’s a basic phase of a control automaton?
 • What are implementables?
 • Please specify (and prove correct) a controller which satisfies this requirement.
 • Do you like gas burners?
 • What property of implementables is interesting in the context of TA?
Lecture 09:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What is the “philosophy” of PLC? What did we generalise/abstract them to?
 - Why did we discuss PLC?
 - What if we don’t have a PLC at hand but only a real-time Linux and a C compiler?
 - What would distinguish a real-time from a plain Linux anyway?
 - What is a PLC automaton?
 - What’s the issue with the cycle time in a PLCA?
 - What does this PLC automaton do?
 - How would you solve this control problem with a PLCA?
 - How does the proposed approach work, from requirements to a correct implementation with DC?
- DC-semantics of DC
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 10, 11 & 14:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What’s notable about TA syntax? What’s a simple clock constraint?
 - What’s a configuration of a TA? When are two in transition relation?
 - Is there something remarkable about the definition of configurations?
 - What’s the difference between guard and invariant? Why have both?
 - What’s a computation path? A run? Zeno behaviour? Timelock?
 - Does this TA have a run? Which/why not?
 - Where does “time pass”?
 - Can you imagine what somebody means by saying “TA are closed under parallel composition”?
 - In how far are Uppaal TA non-compositional?
 - What’s an urgent/committed location? What’s the difference?
 - Is this location of that TA network reachable?
 - Where has the notion of “input action” and “output action” a correspondence in the formal semantics?
 - Can you give a network of TA which has this behaviour?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Regions and Zones

Lecture 12:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What are decidable problems of TA?
 - How can we show this? What are the essential premises of decidability?
 - What is a region? What is the region automaton of this TA?
 - What's the time abstract system of a TA? Why did we consider this?
 - What can you say about the complexity of Region-automaton based reachability analysis?

Lecture 13:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What's a zone? In contrast to a region?
 - Motivation for having zones?
 - What's a DBM? Who needs to know DBMs?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
 - Lecture 15: Timed Büchi Automata
 - Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 15 & 16:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - What’s a TBA and what’s the difference to (extended) TA?
 - What is a timed (regular) language?
 - What language does this TBA accept?
 - Can you give a TBA with this language?
 - What’s undecidable for timed (Büchi) automata?
 - Why is this unfortunate?
 - What’s the idea of the proof?
 - What’s the universality problem?
Lectures

- Lecture 01: Introduction
- Lecture 02: Timed Behaviour
- Lecture 03: Duration Calculus I (Symbols, State Assertions)
- Lecture 04: Duration Calculus II (Terms, Formulae)
- Lecture 05: Duration Calculus III (Abbreviations, Satisfy/Realise)
- Lecture 06: DC Properties I (RDC in Discrete Time)
- Lecture 07: DC Properties II (RDC in Continuous Time)
- Lecture 08: DC Implementables
- Lecture 09: PLC Automata
- Lecture 10: Timed Automata
- Lecture 11: Networks of Timed Automata
- Lecture 12: Location Reachability (or: The Region Automaton)
- Lecture 13: Zones
- Lecture 14: Extended Timed Automata
- Lecture 15: Timed Büchi Automata
- Lecture 16: The Universality Problem for TBA
- Lecture 17: Automatic Verification of DC Properties for TA I
- Lecture 18: Automatic Verification of DC Properties for TA II
Lecture 17 & 18:

- **Educational Objectives:** Capabilities for following tasks/questions.
 - How can we relate TA and DC formulae?
 - What’s a bit tricky about that (regarding semantics and intuition)?
 - Can we use Uppaal to check whether this TA satisfies this DC formula?
 - How? What do we have to be careful with?
 - What is a testable DC formula?
 - What could this monitor/observer/test automaton be useful for?
 - Can the TA and DC formulae for which we can check something be (syntactically) characterised?
References
References