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Methoddogy: Ideal World...

Last Lecture:
= DC Syntax and ics: Abb
« Satisfiable/Realisable/Valid (from 0)

« Semantical Correctness Proof

This Lecture:

» Educational Objectives: Capal

s for following tasks/questions.

+ What are obstacles on proving a design correct in the real-world, and how
to overcome them?

» Facts: decida

y properties.
» What's the idea of the considered (un)decidability proofs?

«_Content:

» (Un-)Decidable problems of DC variants in discrete and continuous time

Gas Burner Revisited

(i) Choose a collection of observables ‘Obs’.
(ii) Provide the requirement/specification ‘Spec’
as a conjunction of DC formulae (over ‘Obs’).

Provide a description ‘CtrI
of the controller in form of a DC formula (over ‘Obs’).

(iv) We say ‘Ctrl" is correct (wrt. ‘Spec’) iff

=0 Ctrl = Spec.

(i) Choose observables:
« two boolean observables G and F'
(i.e. Obs = {G, F}, D(G) = D(F) = {0,1})
« G =1: gas valve open (output)
o F =1: have flame (input)
« define L := G A ~F (leakage)

(ii) Provide the requirement:

Req:«= O((>60 = 20-[L <)

Spedfication and ®@mantics-based CorrednessProafs of
Real-Time Systems with DC

Gas Burner Revisited

) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

e Desliem O([L] = £<1) “poes of buhape hare bogh ol el7"

« Des2: = O[L]3[~L1: [L]) = ¢ > 30) “iwhts whee Lz @
lhe — — <@/

(iv) Prove correctness:

L L L
« We want (or do we want f=...?): gt :&wk\' 2°
I (Des-1 A Des-2 = Req) (Thm. 2.16)



Gas Burner Revsited Gas Burner Revsited: Lemma 217 Gas Burner Reusited: Lemmm 217 | === /20

— O@>60 = 20-[L<)
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Provide a description ‘Ctrl’ Claim: HIFHE s [e=t], i N with n — 1 < £ < n, and split the interval
of the controller in form of a DC formula (over ‘Obs’). . ) e setni= 5% le.n € Nwithn—1< 55 <mn, and split the interval
: ) ! CEO(<30 L<1) — O¢=60 20-[L<t —~—
Here, firstly consider a design: Foes n” /L=y (t= “x. L9 b+30 b30(n—2) b+30(n — 1) b+ 300
Rl — ~ ——— R \ , ' -
o Des-l:<= O([L] = (<1 ! ! ! !
([L] <1 Proof. ) ——
o " % be slofly Hu (o
o Des2: = O([L];[~L]; [L] = £>30) © Assume ‘Req-1 0. 1:6) &
(iv) Prove correctness: o Let Lz be any interpretation of L, and [b, ¢] an interval with ¢ — b > 60, b2 por 301 e
« We want (or do we want k=o...?): bE ) a valiohida. 2. CH._\, L) M+ \ hu.\m\&\
o Show “20- [L < (', ie. oo ka3 b430G-1)
|= (Des-1 A Des-2 = Req) (Thm. 2.16) HHE\N ¢l D\ M & 4 ..-,\.W\I\Ab
< ve)) = X E
« We do show b 1 Mv«@mg.ﬁ&* 1
! = Reg:l = Req (Lem. 2.17) . e ] L 24
£ £ : = e-b2¢p
i with the simplified requirement H 25 u\ Lt # 2 (e-b) i r% " e wab -
3 3 b 3 ?ﬁ?f@?ﬁlv 44 L)
3 Req-1:=0(f|< 30 = [L<1), ; i %0 20 £3 (- w
s ~Z(e.
2 « and we show H g wmn 6) +20
7 g T ¢ b
2 i (Des-1 A Des-2) — Reg-1. (Lem. 2.19) H 2
' 6/35 T3 ' 835
Same Laws of the DC Integral Operator Gas Burner Revisited: Lemma 2.1§0F[7=f ) £l 2= JP=0
= [P=r1+72,
Theorem 2.18 Claim: E[-P] = [P=0,
For all state assertions P and all real numbers 71,72 € R, = (O(L] = < 1)AD(L]; [~L]:[L] = £>30) = O(<30 — [L<1)
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w) E[l = JP=0. iy} LT (vRa) S v BT (T /e %)

v r:::.\.EW v RO e e, LT
VLT T e ) = JL=0
v teso » Q10 107) 932 Mi _\M\b 4, M\?@ v \awme\,
. v lL=o, (Jron J ¢,
iag) > &) V1D, e etsfL=0

: 3961 L<Q~I_RZ<TZ\ R Jr=o

¢ v R (T &) VAL L0 .
i vl leqi el vijLeot

H Vi 401140
F > [req g

1173

133



Methoddogy: The World isNot Ideal...

(i) Choose a collection of observables ‘Obs’

(i

i) Provide specification ‘Spec’ (conjunction of DC formulae (over ‘Obs')).
)

Provide a description ‘Ctrl" of the controller (DC formula (over ‘Obs’)).

iv) Prove ‘Ctrl' is correct (wrt. ‘Spec’).

That looks too simple to be practical. Typical obstacles:

(i)
()

It may be impossible to realise ‘Spec’
it doesn’t consider properties of the plant

There are typically intermediate design levels between ‘Spec’ and 'Ctr

‘Spec’ and ‘Ctrl' may use different observables.

Proving validity of the implication is not trivia

14735

Obstacle (iii ): Different Observables

Assume, ‘Spec’ uses more abstract observables Obs, and ‘Ctrl’ more
concrete ones Obsc.
For instance:
« in Obs4: only consider gas valve open or closed (D(G) = {0,1})
« in Obsc:: may control two valves and care for intermediate positions,
for instance, to react to different heating requests
(D(G1) = {0.1.2,3}, D(Ga) = {0,1,2.3})
To prove correctness, we need information how the observables are
related — an invariant which links the data values of Obs, and Obsc.
If we're given the linking invariant as a DC formula, say ‘Linkc 4’, then
proving correctness of ‘Ctrl' wrt. ‘Spec’ amounts to proving validity (from
0) of

Ctrl ALinkg,a = Spec.
Knke.4

For instance,

i rm{,HD—lo nﬂ\mm\_*mpvb“N
OR6 & (6:2046,0)1
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Obstacle (i): Assumptions As A Form of Plant Model

3

« Often the controller will (or can) operate correctly only under some
assumptions.
« For instance, with a level crossing
« we may assume an upper bound on the speed of approaching trains,
(otherwise we'd need to close the gates arbitrarily fast)
« we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can't make promises to the road traffic)

« We shall specify such assumptions as a DC formula ‘Asm’ on the input
observables and verify correctness of ‘Ctrl" wrt. ‘Spec’ by proving
validity (from 0) of

Ctrl A Asm = Spec

« Shall we care whether 'Asm’ is satisfiable?

Cilakb = Spa i e st sobifille

Obstacle (iv): How to Prove Corredness?

of DC semantics,

by hand on the ba:
« maybe supported by proof rules,

sometimes a general theorem may fit (e.g. cycle times of PLC automata),

« algorithms as in Uppaal.

15735
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Obstacle (ii): I ntermediate Design Levds

« A top-down development approach may involve

» Spec — specifica
+ Des — design
o Ctrl — implementation

n/requirements

« Then correctness is established by proving validity of
Ctrl = Des

and
Des = Spec
(then concluding Ctrl = Spec by transitivity)

« Any preference on the order?

DC Properties

(1)

1635
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Deddabhility Results: Motivation

Recall

Given assumptions as a DC formula ‘Asm’ on the input observables,
verifying correctness of ‘Ctrl" wrt. ‘Spec’ amounts to proving

=0 Ctrl A Asm = Spec

able then (1) is tri
and thus each ‘Ctrl’ correct wrt. ‘Spec’.

« So: strong interest in assessing the satisfiability of DC formulae.

Question: is there an automatic procedure to help us out?
(a.k.a.: is it decidable whether a given DC formula is sati

More interesting for ‘Spec’: is it realisable (from 0)?

+ Question: is it decidable whether a given DC formula is re:

Restricted DC(RDC)  yy,1x-0/x1/p12vs

/

Fu=[P||-F |FVE|F G F

where P is a state assertion, but with boolean observables only.

Note:

« No global variables, thus don't need V.
o dup is Huct

v wo fi w0 € (i guiaad]

) w.crhf o funchor, ,thom

s OF..2

017

1)

2073
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Deddahility Results for Realisability: Overview

30508

[

7 T%Emzn Discrete Time

Continous Time

RDC decidable decidable

RDC + (=1 decidable for r € IN | undecidable for r € R*

RDC + [Pi— [ P
RDC + ¢ =z,Ya undecidable undecidable
DC pndecaatle wandiclolréle

2173

Discrete Time Interpretations

« An interpretation Z is called discrete time interpretation if and only if,
for each state variable X,

Xy : Time — D(X)

with

o Time = R

Time =Rg, . ot
« all discontinuities are in IN. U.d xo

24735

RDC in Discrete Time

223

Discrete Time Interpretations

01305.0 - S -

« An interpretation Z is called discrete time interpretation if and only if,
for each state variable X,
oLk sy T L6 (P]
Xz : Time — D(X) f
4
with \@1\%‘& -@s)
3

ime = Ry,
-4)>0
« all discontinuities are in INj. A \N mv

« An interval [b,e] C Intv is called discrete if and only if b, e € INg.

« We say (for a discrete time interpretation 7 and a discrete interval [b, |
Tlbel = Fys B

if and only if there exists m € [b

11 Ny such that
gl
Thml =R and  I,[mel = By

243



Differences between Continuous and Discrete Time

Differences between Continuous and Discrete Time

« Let P be a state assertion.

E"(IP1:[P)

Continuous Time

v

« Let P be a state assertion.

Discrete Time

Continuous Time

Discrete Time

= [P = [P
E7 [Pl = /\ E'[P] =
(TP1:1PD) (P13 170

06 201
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Deddatility of Sdisfiabilit y/Reali sability from P T
eddabhility of Saisfiahilit y/Reali sahility from 0 RO i T, T,
¥ 4 I
Theorem 3.6. PR \W
The satis ity problem for RDC with discrete time is decidable. Q:A@f«\m @weﬁ cosheet
N Lo
wln L) S wekond
?} U
Theorem 3.9. ! m\.
The realisability problem for RDC with discrete time is decidable.

273

o In particular: £ =1 <= ([1] A=([1];[1])) (in discrete time).

Expressvenessof RDC

25735

cr=1 e A7)
e l=0 = M7
o true = L=0v(€=0)
< [P=0 = [2PTv €=0
s [P=1 = ((P=0); (TPTal=1); JP=0
fP=k+1 = ([P=k); (P=1)
s P>k = ([P=k); 4u
s [P>k = JP2k+1
«[P<k = ([P >k)
o [P<k = < k-
! e 1 Al
§ wherekcNN. OF = oo T, e
: v kdc
. 2655
Sketch: Proof of Theorem 3.6
« give a procedure to construct, given a formula F, a regular language
L(F) such that
T,[0,n] |= F if and only if w € £(F)
where word w describes Z on [0, 7]
(suitability of the procedure: Lemma 3.4)
« then F'is satisfiable in discrete time if and only if £(F) is not empty
(Lemma 3.5)
« Theorem 3.6 follows because
© L(F) can effectively be constructed,
) o the problem is for regular |
¥ 283



Construction o L(F)

o Idea:

« alphabet X(F) consists of basic conjuncts of the state variables in F,
« a letter corresponds to an interpretation on an interval of length 1,

= a word of length n describes an interpretation on interval [0, 7].
Example: Assume F' contains exactly state variables XY, Z, then

S(F)={XAYAZXANYA=ZXANYNZXN-Y N~Z,

Aal 02
SXAY AZ,=XAY A~Z,~X A=Y AZ,~X A=Y A—Z}.
T
%o
1 w= (=X A=Y A=2Z)
Yz
0 (X A=Y A-Z)
i 2! (XAY A-Z)
g 0 (XAY AZ)eS(F)
: felayaz)
) o catkimen
| 2035
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Construction o £(F') more Formally

06 201

= ai...ay € S(F)* with n > 0
describes a discrete interpretation Z on [0,7] if and only if

Vi€ {l,...,n}vtelj—1,4: Zla;() = 1.

For n =0 we put w =¢.

« Each state assertion P can be transformed into an equivalent disjunctive
normal form \/[, a; with a; € $(F).

« Set DNF(P) = {ar, .. an} (C 5(F)).  fwkiants of bogfl u lost" o

« Define £(F) inductively: \
£([P) =DVF(P)F,
£(-R) = DFNUE]

LRV F) = X(T] v& (%),
LRy ) = U T (R
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