Real-Time Systems

Lecture 15: The Universality Problem for TBA

2013-07-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Recall: Timed Languages

• $\sigma=\sigma_1,\sigma_2,\dots\in\Sigma^\omega$ is an infinite word over Σ , and • τ is a time sequence.

Definition. A timed language over an alphabet Σ is a set of timed words over $\Sigma.$

Definition. A time sequence $\tau=\tau_1,\tau_2,\dots$ is an infinite sequence of time values $\tau_i\in\mathbb{R}^+_0$, satisfying the following constraints:

Example: Timed Language

Timed word over alphabet \(\Sigma\): a pair \((\alpha\); where

* \(\sigma\) = \(\alpha\), \(\omega\). is an infinite word over \(\Sigma\), and

* \(\tau\) is a time sequence (strictly) () monotonic non-Zeno).

1 \(\text{cold to } \text{ 'Apple doeps'} \)

1 \(\text{cold to } \text{ 'Apple doeps'} \)

1 \(\text{cold to } \text{ 'Apple doeps'} \)

 $L_{crt} = \{((ab)^{\omega}, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\}$

discipling the structure of a by of the structure of the structure by by

230<551+2

finite pectix where tweestamps don't marker

9 15 19

", but most (vot including) 2 tice weeks after the a topping

Recall:

(i) Monotonicity: $\tau \text{ increases strictly monotonically, i.e. } \tau_i < \tau_{i+1} \text{ for all } i \geq 1.$ (ii) Progress: For every $t \in \mathbb{R}^+_0$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A timed word over an alphabet Σ is a pair (σ,τ) where

Contents & Goals

Last Lecture:

- Timed Words and Languages [Alur and Dill, 1994]
- This Lecture:

Timed Büchi Automata [Alur and Dill, 1994]

- Educational Objectives: Capabilities for following tasks/questions.
 What's a TBA and what's the difference to (extended) TA?
 What's undestable for timed (Bitch) automata?
 What's the idea of the proof?

- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994]
 The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
 Why this is unfortunate.

- Timed regular languages are not everything.

2/30

3/30

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant. $\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \wedge \delta_2$

Definition. A timed Büchi automaton (TBA) ${\mathcal A}$ is a tuple $(\Sigma,S,S_0,X,E,F),$ where Σ is an alphabet,

S is a finite set of states, S₀ ⊆ S is a set of start states,

• X is a finite set of clocks, and • $E \subseteq S \times S \times 2^X \times \Phi(X)$ gives the set of transitions. An edge (s, s', a, λ, b) represents a transition from state s to state s' on input symbol a. The set $A \subset X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

• $F \subseteq S$ is a set of accepting states.

Example: TBA

$A = (\Sigma, S, S_0, X, E, F)$ $(s, s', a, \lambda, \delta) \in E$

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s},\bar{\nu})$, of a TBA (Σ,S,S_0,X,E,F) over a timed word (σ,τ) is an infinite sequence of the form $r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$

with $s_i \in S$ and $\nu_i: X \to \mathbb{R}_0^+$, satisfying the following requirements:

• Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$. \bullet Consecution: for all $i\ge 1,$ there is an edge in E of the form $(s_{i-1},s_i,\sigma_i,\lambda_i,\delta_i)$ such that

The set $\inf(r)\subseteq S$ consists of those states $s\in S$ such that $s=s_i$ for infinitely many $i\geq 0.$ $\begin{aligned} &(\nu_{i-1} + (\tau_i - \tau_{i-1})) \text{ satisfies } \delta_i \text{ and} \\ &\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]. \end{aligned}$

Definition. A run $r=(\bar{s},\bar{\nu})$ of a TBA over timed word (σ,τ) is called (an) accepting (run) if and only if $inf(r)\cap F\neq\emptyset$.

8/30

time shift (as before) • Consecution for all $i \geq 1$, there is an edge in E of the form (s_{i-1},s_i,g_i) , s_{i+1} , s_i) such that $\sum_i dg_i$ before, C_{i-1} and C_j • $(v_{i-1}+\{\tau_{i-1}-\tau_{i-1}\})$) satisfies δ_i and • $v_i=(v_{i-1}+\{\tau_{i-1}-\tau_{i-1}\})/(\lambda_i:=0)$.

8/30

Example: (Accepting) Runs

 $\begin{array}{ll} \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_{1}^{2}} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_{2}^{2}} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_{3}^{2}} \dots \text{ initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E. \text{ s.t.} \\ (-1 + (\tau_i - \tau_{i-1})) \models \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1})) [\lambda_i := 0]. \text{ Accepting iff } \inf(r) \cap F \neq \emptyset. \end{array}$

Can we construct a non-run (get sheld)?

 $(1, \langle 50,0 \rangle \xrightarrow{q} \langle 50,1 \rangle \xrightarrow{b} \langle 50,2 \rangle \xrightarrow{q} \langle 50,3 \rangle \cdots$ Can we construct a (non-)accepting run?

inf(1)= {30,5, }

Example: TBA

(Accepting) TBA Runs

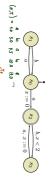
Definition. A run r, denoted by $(\bar{s},\bar{\nu}),$ of a TBA (Σ,S,S_0,X,E,F) over a timed word (σ,τ) is an infinite sequence of the form

with $s_i \in S$ and $\nu_i: X \to \mathbb{R}_0^+$, satisfying the following requirements:

 $r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \cdots$

• Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.

 $A = (\Sigma, S, S_0, X, E, F)$ $(s, s', a, \lambda, \delta) \in E$



(: (\s_0) x=0 \frac{a}{10} < \frac{1}{3}, \times \frac{1}{3} > \land \land \frac{1}{3} \times \land \land \frac{1}{3} \frac{1}{3} \times \land \frac{1}{3} \frace The standards gets steel here - this is not a con-1 (0-0)

The Language of a TBA

 $\{(\sigma,\tau)\mid \mathcal{A} \ \underset{\longleftarrow}{\operatorname{has\ an}}\ \operatorname{accepting\ run\ over}\ (\sigma,\tau)\}.$ For short: $L(\mathcal{A})$ is the language of $\mathcal{A}.$ Definition. For a TBA A, the language $L(\mathcal{A})$ of timed words it accepts is defined to be the set 04

Definition. A timed language L is a timed regular language if and only if $L=L(\mathcal{A})$ for some TBA $\mathcal{A}.$

Example: Language of a TBA

$L(\mathcal{A}) = \{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$

 $L(\mathcal{A}) = L_{crt} \ (= \{ ((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2) \})$

* $L_{cd} \in L(A)$; this some $(s,z) \in L_{cd}$. (so there an excepting out of A. $e(LA) \in L_{cd}$; this some $(s,z) \in L(A)$. Then there is an excepting out (s,z).

Question: Is L_{crt} timed regular or not?

11/30

The Universality Problem is Undecidable for TBA [Alur and Dill, 1994]

12/30

The Universality Problem

Given: A TBA A over alphabet Σ.

 $\begin{array}{l} \textbf{Question: Does} \ A \ \text{accept all timed words over} \ \Sigma? \\ \text{In other words: Is} \ L(A) = \{(\sigma,\tau) \mid \sigma \in \Sigma^\omega, \tau \ \text{time sequence}\}. \end{array}$

Proof Idea of M (staying) med meaning net executings of any

Theorem 5.2. The problem ton over alphabet Σ accept g whether a timed automawords over Σ is Π_1^1 -hard.

 \circ Consider a language L_{winder} which consists of the recurring computations of a 2-counter machine M.-condings of receiving compenhantum
-Lundez

ullet Construct a TBA ${\mathcal A}$ from M which accepts the complement of L_{undec} , i.e. with $L(A) = \overline{L}_{undec}$.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].) Recall: With classical Büchi Automata (untimed), this is different:

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1 -hard.

ullet Then ${\mathcal A}$ is universal if and only if L_{undec} is empty...

 \dots which is the case if and only if M doesn't have a recurring computation.

14/30

13/30

• B' such that $L(B')=\overline{L(B)}$ is effectively computable. • Language emptyness is decidable for Büchi Automata.

Let B be a Büchi Automaton over Σ.
 B is universal if and only if L(B) = ∅.

— complement in Es

The Universality Problem

- * Given: A TBA A over alphabet Σ .

 * Question: Does A accept all timed words over Σ ?
 In other words: Is $L(A) = \{(\sigma,\tau) \mid \sigma \in \Sigma^{\sigma}, \tau \text{ time sequence}\}.$

 $\sum_{i=1}^{n} \{a,b,c\}$

At 300 on is univasel

13/30

Once Again: Two Counter Machines (Different Flavour)

A two-counter machine ${\cal M}$ A two-counter machine M2: $\frac{1}{10}$ is $\frac{1}{10}$ by $\frac{1}{10}$ $\frac{1}{10$ jumps, here even non-deterministically.

ullet A computation of M is an infinite consecutive sequence

A configuration of M is a triple ⟨i, c, d⟩:

program counter $i\in\{1,\ldots,n\}$, values $c,d\in\mathbb{N}_0$ of C and D.

 $\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$. <1,0,0>, <2,0,1>, <3,1,1>,...

A computation of M is called recurring iff $i_j=1$ for infinitely many $j\in\mathbb{N}_0.$

Step 1: The Language of Recurring Computations

• Let M be a 2CM with \underline{n} instructions.

 $\begin{tabular}{ll} \begin{tabular}{ll} Wanted: A timed language L_{modex} (over some alphabet) representing exactly the recurring computations of M. (In particular s.t. L_{modex} = \emptyset if and only if M has no recurring computation.) \end{tabular}$

- Choose $\Sigma = \{b_1, \dots, b_n, a_1, a_2\}$ as alphabet.
- . We represent a configuration (j,c,d) of M by the sequence $b_1 a_1 \dots a_d a_2 \dots a_d = b_1 a_1^c a_2^d$ c times d times

16/30

Step 2: Construct "Observer" for Lundec

Wanted: A TBA ${\mathcal A}$ such that

$$L(A) = \overline{L_{undec}},$$

i.e., $\mathcal A$ accepts a timed word (σ,τ) if and only if $(\sigma,\tau) \not\in L_{undec}$. Approach: What are the reasons for a timed word not to be in L_{undec} ?

- (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j,j+1[$.
- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.
- (iii) The timed word is not recurring, i.e. it has only finitely many $b {\bf \ell}$
- (iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_j^* on the configuration encoded in [j,j+1].

Then set Plan: Construct a TBA \mathcal{A}_0 for case (i), a TBA \mathcal{A}_{mil} for case (ii), a TBA \mathcal{A}_{mcur} for case (iii), and one TBA \mathcal{A}_i for each instruction for case (iv).

 $A = A_0 \cup A_{init} \cup A_{recur} \cup \bigcup_{1 \le i \le n} A_i$

18/30

Step 1: The Language of Recurring Computations $C_{P,k} = C_{P,k}$ Let L_{unidec} be the set of the timed words (σ,τ) with $\{z,y,t\}$ of i $c_{i+1} = c_i + 1$: for every a_i at time t in the interval [j+1,j+2], except for the last one, there is an a_i at time t-1, i i $c_{i+1} = c_i - 1$: for every a_i at time t in the interval [j,j+1], except for the last one, there is an a_i at time t+1. • σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2}...$ And analogously for the a_2 's. For all $j \in \mathbb{N}_0$, $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M. • the time of b_{ij} is j. • if $c_{j+1}=c_{j}$: for every a_1 at time t in the interval [j,j+1]there is an a_1 at time t+1. < 3,5,7) - 4 - 4 - 7

Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in [j,j+1[$.

[Alur and Dill, 1994]: "It is easy to construct such a timed automaton."

<u>۲</u> ۴ ν.... δω χ... ή δω

19/30

Step 2: Construct "Observer" for L_{undec}

Wanted: A TBA ${\mathcal A}$ such that

 $L(A) = \overline{L_{wndec}}$

Approach: What are the reasons for a timed word not to be in L_{undec} ? i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2}$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M.
- the time of b_{ij} is j,
- if $c_{j+1} = c_j$ (= $c_j + 1$, = $c_j 1$): ...

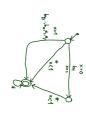
18/30

17/30

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $\emptyset \le t < I$ doesn't encode $\langle 1,0,0 \rangle$.

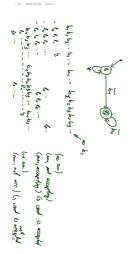
 $\{(\sigma_j,\tau_j)_{j\in\mathbb{N}_0} \mid (\sigma_0\neq b_1) \vee (\tau_0\neq 0) \vee (\tau_1\neq 1)\}.$



Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i .

ullet ${\cal A}_{recur}$ accepts words with only finitely many b_i



Consequences: Language Inclusion

- Given: Two TBAs A_1 and A_2 over alphabet B.
 Question: Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure: Characterise the allowed behaviour as A_2 and model the design as A_1 .

- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
- If language inclusion was decidable, then we could use it to decide universality of A by checking

where \mathcal{A}_{univ} is any universal TBA (which is easy to construct). $\mathcal{L}(\mathcal{A}_{\mathit{univ}}) \subseteq \mathcal{L}(\mathcal{A})$

Step 2.(iv): Construct A_i

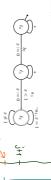
(iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

Example: assume instruction \mathcal{I} is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. $\mathcal{A}_{\mathcal{I}}$ is $\mathcal{A}_{\mathcal{I}}^{1} \cup \cdots \cup \mathcal{A}_{\mathcal{I}}^{n}$.

- A² is



- \mathcal{A}_{2}^{2} accepts words which encode unexpected forestend of counter C. \mathcal{A}_{2}^{2} ... \mathcal{A}_{3}^{2} accept words with min.

22/30

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA $\mathcal A$ such that $\mathcal L(\mathcal A)=W$).
- Question: Is \overline{W} timed regular?
- Possible applications of a decision procedure: • Characterise the allowed behaviour as A_2 and model the design as A_1 .
 • Automatically construct A_3 with $L(A_3)=\overline{L(A_2)}$ and check

$L(A_1) \cap L(A_3) = \emptyset$,

- that is, whether the design has any non-allowed behaviour

Taking for granted that:

The intersection automate is effectively computable.

The intersects problem for Bickin automata is decidable.

(Proof by construction of region automaton [Alur and Dill. 1994].)

25/30

Aha, And...?

23/30

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA $\mathcal A$ such that $\mathcal L(\mathcal A)=W$).
- Question: Is W timed regular?
- If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the II]-hardness of the inclusion prob-lem." [Alur and Dil., 1994]

A non-complementable TBA A:

$$\bigcap_{x := 0}^{a} \bigcap_{x = 1}^{a} \bigcap_{a}^{a}$$

 $\mathcal{L}(\mathcal{A}) = \{(a^{\omega}, (t_t)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \ \exists j > i : (t_j = t_i + 1)\}$

 $\overline{\mathcal{L}(\mathcal{A})} = \{(a^\omega, (t_t)_{t \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1\}.$

Complement language:

Beyond Timed Regular

27/30

Beyond Timed Regular

With clock constraints of the form

we can describe timed languages which are not timed regular. $x+y \leq x'+y'$

 $\{((abc)^{\omega},\tau)\mid\forall\,j.(\tau_{3j}-\tau_{3j-1})=2(\tau_{3j-1}-\tau_{3j-2})\}$

References

29/30

References

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 12(Q):183-235. [Olderog and Direks, 2008] Olderog, E.-R., and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.