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Real-Time Systems

Lecture 02: Timed Behaviour
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Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals
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Last Lecture:

o Motivation, Overview

This Lecture:

o Educational Objectives:

o Get acquainted with one (simple but powerful)
formal model of timed behaviour.

o See how first order predicate-logic can be used to state requirements.

e Content:
o Time-dependent State Variables
o Requirements and System Properities in first order predicate logic

o Classes of Timed Properties
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Recall: Prerequisites
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Sensors

actuators

controller

To
design a (gas burner) controller that meets its requirements
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Real-Time Behaviour, More Formally...
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Sate Variables (or Observables)
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We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obsy, ..., o0bs,

each equipped with a domain D(obs;), 1 < i < n.

Example: gas burner
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System Evolution over Time
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One possible evolution (or behaviour) of the considered system over
time is represented as a function

7 : Time — D(obsy) X - -+ x D(obsy,).

If (and only if) observable obs; has value d; € D(0bs;) at time t € Time,
1 <7< n, we set

7(t) = (dv, ..., dy).

For convenience, we use
obs; : Time — D(obs;)

to denote the projection of 7 onto the i-th component.
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What' s the time?
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There are two main choices for the time domain Time:

discrete time:

continuous
or dense time:

Time = INg, the set of natural numbers.

Time = Rg, the set of non-negative real numbers.

Throughout the lecture we shall use the continuous time model and

consider discrete time as a special case.

Because

plant models usually live in continuous time,
we avoid too early introduction introduction of hardware

considerations,

Interesting_view: continous-time is a well-suited

abstraction from the

discrete-time realms induced by clock-cycles etc.

Example: Gas Burner
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One possible evolution of considered system over time is represented as function
7 : Time — D(obs1) X - -+ X D(0bsy).
If (and only if) observable obs; has value d; € D(o0bs;) at time ¢ € Time, set:
w(t) = (di,...
For convenience: use obs; : Time — D(o0bs;).
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Example: Gas Burner meel -
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Levels of Detail
Note:
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Depending on the choice of observables we can describe a real-time
system at various levels of detail.

For instance,

if the gas valve has different positions, use @(6)’/{@/0), (’:"),(4’)/('/);

o (AR LANA: G : Time — {0,1,2,3}

(But: D(G) is never continuous in the lecture, otherwise we had a
hybrid system.)

if the thermostat and the controller are connected via a bus and
exchange messages, use p/{"ak :Zam;
. 0, Lbeufs focs,
B : Time — Msg* / .ﬁ I%J

to model the receive buffer as a finite sequence of messages from Msg.

etc.
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System Properties
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Predicate Logic N gy
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obs an observable, d € D(obs), t € Var logical variable, ¢1,co € ]RO+ constants.
We assume the standard semantics interpreted over system evolutions
obs; : Time — D(o0bs),1 <i < mn.

That is, given a particular system evolution 7 and a formula ¢, we can tell
whether 7 satisfies ¢ under a given valuation 3, denoted by 7, 5 |= ¢.
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Recall: Predicate Logic, Standard Semantics A ¥= %]

Evolution of system over time: m: Time — D(obs1) X --- x D(0bsy).

Iff obs; has value d; € D(obs;) at t € Time, set: w(t) = (di,...,dn).
obs; : Time — D(obs;).

For convenience: use
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Predicate Logic w1 [t/ vesteldes ar ;amé/w/
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Note: we can view a closed predicate logic formula ¢ as a concise description
of
{m : Time — D(obs1) x -+ x D(obsy,) | m,0 = @}V\
a et of

the set of all system evolutions satisfying .

m&a(tﬁu

For example,
Vit e Timee—(I(t) A—G(t))

describes all evolutions where there is no ignition with closed gas valve.
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Requirements and System Properties
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So we can use first-order predicate logic to formally specify requirements.

A requirement ‘Req’ is a set of system behaviours with the pragmatics
that, whatever the behaviours of the final implementation are, they

shall lie within this set.
‘A’/[lmlng @ £ ,{QACIV)}’//{(&. ‘ﬁY (*’/
x)

For instance, /

Req (<= Vt € Timee ~(I(t) A —G(t))
says: “an implementation is fine as long as it doesn't ignite without gas in
any of its evolutions”.

We can also use first-order predicate logic to formally describe properties
of the implementation or design decisions.

For instance,
Des <= VteTimee[(t) = V' e[t—1,t+1]eG('))

says that our controller opens the gas valve at least 1 time unit before
ignition and keeps it open.
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Correctness
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Let ‘Req’ be a requirement,
‘Des’ be a design, and

‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of (Time — x?le(obsi)),
described in any form.

We say
‘Des’ is a correct design (wrt. ‘Req’) if and only if

Des C Regq.
‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if
Impl C Des (or Impl C Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des = Req’ is valid.

Classes of Timed Properties
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Safety Properties
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A safety property states that
something bad must never happen [Lamport].

Example: train inside level crossing with gates open.

More general, assume observable C' : Time — {0,1} where C(¢) =1
represents a critical system state at time t.

Then
Vit € Time e =C(t)

is a safety property.

In general, a safety property is characterised as a property that can be
falsified in bounded time.

But safety is not everything...

Liveness Properties
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The simplest form of a liveness property states that
something good eventually does happen.

Example: gates open for road traffic.

More general, assume observable G : Time — {0, 1} where G(t) =1
represents a good system state at time ¢.

Then
It € Time o G(t)

is a liveness property.

Note: not falsified in finite time.

With real-time, liveness is too weak...
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Bounded Response Properties
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A bounded response property states that
the desired reaction on an input occurs in time interval [b, €.

Example: from request to secure level crossing to gates closed.

More general, re-consider good thing G : Time — {0, 1} and request
R :Time — {0,1}.

Then

Vit € Timee (R(tl) — dty € [tl +10,t1 + 15] ° G(tz))
is a bounded liveness property.
This property can again be falsified in finite time.

With gas burners, this is still not everything...
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Duration Properties
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A duration property states that
for observation interval [b, €] characterised by a condition A(b,e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

Example: leakage in gas burner.

More general, re-consider critical thing C' : Time — {0, 1}.

Then
Vb,e € Time s <A(b,e) — / C(t) dt < u(b,e))
b

is a duration property.

This property can again be falsified in finite time.
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