- 10 - 2013-06-04 - main -

Real-Time Systems

Lecture 10: Timed Automata

2013-06-04

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

PLC, PLC automata

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - what's notable about TA syntax? What's simple clock constraint?
 - what's a configuration of a TA? When are two in transition relation?
 - what's the difference between guard and invariant? Why have both?
 - what's a computation path? A run? Zeno behaviour?
- Content:
 - Timed automata syntax
 - TA operational semantics

Content

Introduction

- First-order Logic
- Duration Calculus (DC)
- Semantical Correctness Proofs with DC
- DC Decidability
- DC Implementables
- PLC-Automata

$$obs: \mathsf{Time} o \mathscr{D}(obs)$$

- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- Extended Timed Automata
- Undecidability Results

$$\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_0 \xrightarrow{\lambda_1} \langle obs_1, \nu_2 \rangle, t_1 \in \mathbb{R}$$

- Automatic Verification...
- ...whether TA satisfies DC formula, observer-based

Recap

17/37

Recall: Tying It All Together

- 2013-04-16 - Scontent -

Example

- 10 - 2013-06-04 - Sexa -

Example

5/31

Example Cont'd

Problems:

- Deadlock freedom [Behrmann et al., 2004]
- Location Reachability ("Is this user able to reach 'bright'?")
- Constraint Reachability ("Can the controller's clock go past 5?")

- 10 - 2013-06-04 - Sexa -

- Pure TA syntax
 - channels, actions
 - (simple) clock constraints
 - Def. TA
- Pure TA operational semantics
 - clock valuation, time shift, modification
 - operational semantics
 - discussion
- Transition sequence, computation path, run
- Network of TA
 - parallel composition (syntactical)
 - restriction
 - network of TA semantics
- Uppaal Demo
- Region abstraction; zones
- Extended TA; Logic of Uppaal

Pure TA Syntax

To define timed automata formally, we need the following sets of symbols:

- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel $a \in \mathsf{Chan}$, two visible actions: a? and a! denote **input** and **output** on the **channel** (a?, a! \notin Chan).
- $\tau \notin \text{Chan represents an internal action}$, not visible from outside.
- $(\alpha, \beta \in)$ $Act := \{a? \mid a \in \mathsf{Chan}\} \cup \{a! \mid a \in \mathsf{Chan}\} \cup \{\tau\}$ is the set of actions.
- An alphabet B is a set of channels, i.e. $B \subseteq \mathsf{Chan}$.
- ullet For each alphabet B, we define the corresponding action set

$$B_{?!} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.$$

• Note: $\mathsf{Chan}_{?!} = Act$.

9/31

Simple Clock Constraints

- Let $(x, y \in) X$ be a set of clock variables (or clocks).
- The set $(\varphi \in) \Phi(X)$ of (simple) clock constraints (over X) is defined by the following grammar:

• Clock constraints of the form $x-y\sim c$ are called **difference constraints**.

11/31

Example

0 - 2013-06-04 - Stasvn -

Definition 4.3. [*Timed automaton*] A (pure) **timed automaton** A is a structure

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

where

- $(\ell \in)$ L is a finite set of locations (or control states),
- $B \subseteq \mathsf{Chan}$,
- X is a finite set of clocks,
- $I:L \to \Phi(X)$ assigns to each location a clock constraint, its invariant,
- $E\subseteq L\times B_{?!}\times \Phi(X)\times 2^X\times L$ a finite set of **directed edges**. Edges $(\ell,\alpha,\varphi,Y,\ell')$ from location ℓ to ℓ' are labelled with an **action** α , a **guard** φ , and a set Y of clocks that will be **reset**.
- ℓ_{ini} is the initial location.

13/31

Graphical Representation of Timed Automata

$$\boxed{\mathcal{A} = (L, B, X, I, E, \ell_{ini})}$$

Locations (control states) and their invariants:

 $\bullet \ \ \textbf{Edge} \ \ \textcolor{red}{\textbf{(control states)}} : \ \ (\underline{\ell}, \alpha, \varphi, Y, \ell'_{\mathbf{1}}) \in L \times B_{?!} \times \Phi(X) \times 2^X \times L$

0 - 2013-06-04 - Stasvn

Clock Valuations

• Let X be a set of clocks. A **valuation** ν of clocks in X is a mapping $\nu: X \to \mathsf{Time}$

assigning each clock $x \in X$ the current time $\nu(x)$.

• Let φ be a clock constraint.

The **satisfaction** relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:

$$\begin{array}{lll} \bullet & \nu \models \mathbf{x} \sim \mathbf{c} & \text{iff} & \nu(x) \sim c & \nu(\mathbf{x}) \stackrel{\wedge}{\sim} \stackrel{\wedge}{c} \\ \bullet & \nu \models \mathbf{x} - \mathbf{y} \sim \mathbf{c} & \text{iff} & \nu(x) - \nu(y) \sim c & \nu(\mathbf{x}) \stackrel{\wedge}{\sim} \stackrel{\wedge}{c} \\ \bullet & \nu \models \varphi_1 \wedge \varphi_2 & \text{iff} & \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 & \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \end{array}$$

• Two clock constraints φ_1 and φ_2 are called (logically) equivalent if and only if for all clock valuations ν , we have

$$\nu \models \varphi_1$$
 if and only if $\nu \models \varphi_2$.

In that case we write $\models \varphi_1 \iff \varphi_2$.

- 10 - 2013-06-04 - Stasem -

Let ν be a valuation of clocks in X and $t \in \mathsf{Time}$.

Time Shift

We write $\nu + t$ to denote the clock valuation (for X) with

$$(\nu + t)(x) = \nu(x) + t.$$

for all $x \in X$,

Modification

Let $Y \subseteq X$ be a set of clocks.

We write $\underbrace{\nu[Y:=t]}$ to denote the clock valuation with

function
$$(\nu[Y:=t])(x) = \begin{cases} t & \text{, if } x \in Y \\ \nu(x) & \text{, otherwise} \end{cases}$$

Special case **reset**: t = 0.

17/31

Operational Semantics of TA

a con this be

Definition 4.4. The operational semantics of a timed automaton

$$\mathcal{A} = (L,B,X,I,E,\ell_{ini}) \qquad \text{the set of labels}$$
 is defined by the (labelled) transition system
$$\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \overset{\lambda}{\rightarrow} | \ \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

o can be larger

where

- $Conf(\mathcal{A}) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \ \nu \models I(\ell) \}$
- Time \cup $B_{?!}$ are the transition labels,
- there are delay transition relations

 $\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in \mathsf{Time}$ and action transition relations

 $\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in B_{?!}.$ (\rightarrow later slides)

• $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(A)$ with $\nu_0(x) = 0$ for all $x \in X$ is the set of initial configurations.

18/31

Operational Semantics of TA Cont'd

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

$$\mathcal{T}(\mathcal{A}) = (\mathit{Conf}(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \xrightarrow{\lambda} \mid \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

$$\subseteq \mathit{Conf}(\mathcal{A}) \times \mathit{Conf}(\mathcal{A})$$

• Time or delay transition:

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$.

"Some time $t \in \text{Time elapses}$ respecting invariants, location unchanged."

Action or discrete transition:

not advance."

Transition Sequences, Reachability

• A transition sequence of A is any finite or infinite sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots$$

with

- $\langle \ell_0, \nu_0 \rangle \in C_{ini}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$

ullet A transition sequence of ${\cal A}$ is any finite or infinite sequence of the form

$$\underbrace{\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle}_{} \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots$$

with

- $\langle \ell_0, \nu_0 \rangle \in C_{ini}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$
- A configuration $\langle \ell, \nu \rangle$ is called **reachable** (in \mathcal{A}) if and only if there is a transition sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

• A location ℓ is called **reachable** if and only if any configuration $\langle \ell, \nu \rangle$ is reachable, i.e. there exists a valuation ν such that $\langle \ell, \nu \rangle$ is reachable.

20/31

$$\begin{array}{cccc} \langle \mathit{off}, x = 0 \rangle & \xrightarrow{2.5} \langle \mathit{off}, x = 2.5 \rangle & \xrightarrow{1.7} \langle \mathit{off}, x = 4.2 \rangle & \xrightarrow{\mathit{l0}} \rangle & \langle \mathit{off}, x = \mathit{lk.2} \rangle & \langle \mathit{off}, x = 2.1 \rangle & \langle \mathit{off}, x = 2.1 \rangle & \langle \mathit{off}, x = 12.1 \rangle & \langle \mathit{off}, x = 0 \rangle & \langle \mathit{off}, x = 0 \rangle & \langle \mathit{off}, x = 12.2 \rangle &$$

10 - 2013-06-04 - Stasem -

Discussion: Set of Configurations

Recall the user model for our light controller:

• ("Good" configurations:

$$\langle \ell_1, y = 0 \rangle, \langle \ell_1, y = 1.9 \rangle, \quad \langle \ell_2, y = 1000 \rangle,$$

$$\langle \ell_2, y = 0.5 \rangle, \quad \langle \ell_3, y = 27 \rangle$$

· "Bad" configurations: (actually not configs.)

$$\langle \ell_1, y = 2.0 \rangle, \langle \ell_1, y = 2.5 \rangle$$

22/31

Two Approaches to Exclude "Bad" Configurations

- The approach taken for TA:
 - Rule out **bad** configurations in the step from $\mathcal A$ to $\mathcal T(\mathcal A)$. "Bad" configurations are not even configurations!
 - Recall Definition 4.4:
 - $\bullet \ \ Conf(\mathcal{A}) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}$
 - $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$
 - Note: Being in Conf(A) doesn't mean to be reachable.

(x)5 0x<3 0x \le 10 < 0, x \text{=} \right) \in \le 6 \text{onf} \text{bad nof}

- The approach not taken for TA:
 - ullet consider every $\langle \ell,
 u \rangle$ to be a configuration, i.e. have

• "bad" configurations not in transition relation with others, i.e. have, e.g.,

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$ and $\nu + t' \models I(\ell')$.

Computation Paths

- $\langle \ell, \nu \rangle, t$ is called time-stamped configuration, \mathcal{LET}_{he}
- time-stamped delay transition: $\langle \ell, \nu \rangle, t \xrightarrow{t'} \langle \ell, \nu + t' \rangle, t + t'$ iff $t' \in \mathsf{Time}$ and $\langle \ell, \nu \rangle \xrightarrow{t'} \langle \ell, \nu + t' \rangle.$
- time-stamped action transition: $\langle \ell, \nu \rangle, t \xrightarrow{\alpha} \langle \ell', \nu' \rangle, t$ iff $\alpha \in B_{?!}$ and $\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$.
- A sequence of time-stamped configurations

$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

is called **computation path** (or path) of \mathcal{A} **starting in** $\langle \ell_0, \nu_0 \rangle, t_0$ if and only if it is either infinite or maximally finite.

• A computation path (or path) is a computation path starting at $\langle \ell_0, \nu_0 \rangle, 0$ where $\langle \ell_0, \nu_0 \rangle \in C_{ini}$.

Timelocks and Zeno Behaviour

26/31

Timelocks and Zeno Behaviour

• Timelock:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{2} \langle \ell, x = 2 \rangle, 2$$
$$\langle \ell', x = 0 \rangle, 0 \xrightarrow{3} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \dots$$

• Zeno behaviour:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{1/2} \langle \ell, x = 1/2 \rangle, \frac{1}{2} \xrightarrow{1/4} \langle \ell, x = 3/4 \rangle, \frac{3}{4} \dots$$

$$\xrightarrow{1/2^n} \langle \ell, x = (2^n - 1)/2^n \rangle, \frac{2^n - 1}{2^n} \dots$$

Real-Time Sequence

Definition 4.9. An infinite sequence

$$t_0, t_1, t_2, \dots$$

of values $t_i \in \text{Time for } i \in \mathbb{N}_0$ is called **real-time sequence** if and only if it has the following properties:

• Monotonicity:

$$\forall i \in \mathbb{N}_0 : t_i \leq t_{i+1}$$

• Non-Zeno behaviour (or unboundedness or progress):

$$\forall t \in \mathsf{Time} \ \exists \ i \in \mathbb{N}_0 : t < t_i$$

10 - 2013 06 04 - 5+22

27/31

Run

Definition 4.10. A **run** of $\mathcal A$ starting in the time-stamped configuration $\langle \ell_0, \nu_0 \rangle, t_0$ is an infinite computation path of $\mathcal A$

$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

where $(t_i)_{i\in\mathbb{N}_0}$ is a real-time sequence.

If $\langle \ell_0, \nu_0 \rangle \in C_{ini}$ and $t_0 = 0$, then we call ξ a **run** of \mathcal{A} .

Example:

dies not have a jul

$$- \langle \ell_{0}, 0 \rangle, 0 \xrightarrow{S^{?}} \langle \ell_{0}, 0 \rangle, 0 \xrightarrow{10} \langle \ell_{0}, 1 \rangle, 1 \xrightarrow{L^{?}} \langle \ell_{0}, 0 \rangle, 1 \xrightarrow{10} \langle \ell_{0}, 1 \rangle, 2 \xrightarrow{S^{?}} \langle \ell_{0}, 0 \rangle, 2 \cdots$$

$$- \langle \ell_{0}, 0 \rangle, 0 \xrightarrow{40} \langle \ell_{0}, 0 \rangle, 10 \xrightarrow{a^{!}} \langle \ell_{1}, 0 \rangle, 10 \xrightarrow{a^{!}} \langle \ell_{1}$$

· .

29/31

References

- 10 - 2013-06-04 - main -

References

[Behrmann et al., 2004] Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark.[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

10 - 2013-06-04 - main -

31/31