
Real-TimeSystems

Lecture13: Regions andZones

2013-06-18

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
3

–
2
0
1
3
-0

6
-1

8
–

m
a
in

–

Contents & Goals

Last Lecture:

• Started location reachability decidability (by region construction)

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a region? What is the region automaton of this TA?

• What’s the time abstract system of a TA? Why did we consider this?

• What can you say about the complexity of Region-automaton based
reachability analysis?

• What’s a zone? In contrast to a region?

• Motivation for having zones?

• What’s a DBM? Who needs to know DBMs?

• Content:

• Region automaton cont’d

• Reachability Problems for Extended Timed Automata

• Zones

• Difference Bound Matrices

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
p
re

li
m

–

2/31

TheLocationReachabilit y Problem Cont’d

–
1
3

–
2
0
1
3
-0

6
-1

8
–

m
a
in

–

3/31

TheRegion Automaton

Definition 4.29. [Region Automaton] The region automaton
R(A) of the timed automaton A is the labelled transition system

R(A) = (Conf (R(A)), B?!, {
α
−→R(A)| α ∈ B?!}, Cini)

where
• Conf (R(A)) = {〈ℓ, [ν]〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)},

• for each α ∈ B?!,

〈ℓ, [ν]〉
α
−→R(A) 〈ℓ

′, [ν′]〉 if and only if 〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉

in U(A), and

• Cini = {〈ℓini , [νini]〉} ∩ Conf (R(A)) with νini(X) = {0}.

Proposition. The transition relation of R(A) is well-defined, that
is, independent of the choice of the representative ν of a region [ν].

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

4/31

Example: Region Automaton

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U(A):

· · ·
press
=⇒ 〈light, [x = 0]〉

〈bright, [x = 0]〉
press
=⇒ · · ·

〈bright, [x = 0.1]〉
press
=⇒ · · ·

〈bright, [x = 1.0]〉
press
=⇒ · · ·

. . .
〈bright, [x = 3.0]〉

press
=⇒ · · ·

〈bright, [x = 3.001]〉
press
=⇒ · · ·

〈off, [x = 0]〉
press
=⇒ · · ·

. . .
〈off, [x = 2.9]〉

press
=⇒ · · ·

〈off, [x = 3.0]〉
press
=⇒ · · ·

〈off, [x = 3.001]〉
press
=⇒ · · ·

pr
es
s

=⇒

pr
es
s

=⇒
pre

ss

=⇒
pres

s

=⇒

press

=⇒

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

5/31

Remark

Remark 4.30. That a configuration 〈ℓ, [ν]〉 is reachable in R(A)
represents the fact, that all 〈ℓ, ν〉 are reachable.

IAW: in A, we can observe ν when
location ℓ has just been entered.

The clock values reachable by staying/letting time pass in ℓ are
not explicitly represented by the regions of R(A).

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

6/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✘ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

7/31

Region AutomatonProperties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed
automaton A the following holds:

ℓ is reachable in U(A) if and only if ℓ is reachable in R(A).

For the Proof:

Definition 4.21. [Bisimulation] An equivalence relation ∼ on val-
uations is a (strong) bisimulation if and only if, whenever

ν1 ∼ ν2 and 〈ℓ, ν1〉
α

=⇒ 〈ℓ′, ν′
1〉

then there exists ν′
2 with ν′

1 ∼ ν′
2 and 〈ℓ, ν2〉

α
=⇒ 〈ℓ′, ν′

2〉.

Lemma 4.26. [Bisimulation] ∼= is a strong bisimulation.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

8/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✔ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

9/31

TheNumber of Regions

Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal
constant for each x ∈ X , and c = max{cx | x ∈ X}. Then

(2c + 2)|X| · (4c + 3)
1

2
|X|·(|X|−1)

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

10/31

Observations Regarding theNumber of Regions

• Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

• Note: the upper bound is a worst case, not an exact bound.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

11/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✔ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✔ Lem. 4.28: R(A) is finite.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

12/31

Putting It All Together

Let A = (L, B, X, I, E, ℓini) be a timed automaton, ℓ ∈ L a location.

• R(A) can be constructed effectively.

• There are finitely many locations in L (by definition).

• There are finitely many regions by Lemma 4.28.

• So Conf (R(A)) is finite (by construction).

• It is decidable whether (Cinit of R(A) is empty) or whether there exists
a sequence

〈ℓini , [νini]〉
α
−→R(A) 〈ℓ1, [ν1]〉

α
−→R(A) . . .

α
−→R(A) 〈ℓn, [νn]〉

such that ℓn = ℓ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

13/31

TheConstraint Reachabilit y Problem

• Given: A timed automaton A, one of its control locations ℓ, and a clock
constraint ϕ.

• Question: Is a configuration 〈ℓ, ν〉 reachable where ν |= ϕ, i.e. is there
a transition sequence of the form

〈ℓini , νini〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

in the labelled transition system T (A) with ν |= ϕ?

• Note: we just observed that R(A) loses some information about the clock
valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed
automata is decidable.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

14/31

TheDelay Operation

• Let [ν] be a clock region.

• We set

delay [ν] = {ν′ + t | ν′ ∼= ν and t ∈ Time}.

0 1
0

1

x

y

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

15/31

TheDelay Operation

• Let [ν] be a clock region.

• We set

delay [ν] = {ν′ + t | ν′ ∼= ν and t ∈ Time}.

0 1
0

1

x

y

• Note: delay [ν] can be represented as a finite union of regions.

For example, with our two-clock example we have

delay [x = y = 0] = [x = y = 0] ∪ [0 < x = y < 1] ∪ [x = y = 1] ∪ [1 < x = y]

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
d
ec

–

15/31

Zones

(Presentation following [Fränzle, 2007])

–
1
3

–
2
0
1
3
-0

6
-1

8
–

m
a
in

–

16/31

Recall : Number of Regions

Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal constant
for each x ∈ X, and c = max{cx | x ∈ X}. Then

(2c + 2)|X| · (4c + 3)
1

2
|X|·(|X|−1)

is an upper bound on the number of regions.

• In the desk lamp controller,

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

all regions are reachable in R(L), but we convinced ourselves that it’s
actually only important whether ν(x) ∈ [0, 3] or ν(x) ∈ (3,∞).

So: seems there are even equivalence classes of undistinguishable regions.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

17/31

Wanted: Zones instead of Regions

• In R(L) we have transitions:

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , {0}〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , (0, 1)〉,

• . . . ,

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , (2, 3)〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , {3}〉

• Which seems to be a complicated way to write just:

〈 light , {0}〉
press?
−−−−→ 〈 bright , [0, 3]〉

• Can’t we constructively abstract L to:

〈 off , {0}〉 〈 light , {0}〉 〈 bright , [0, 3]〉

〈 off , (3,∞)〉 〈 off , [0,∞)〉

press? press?

press?

press?

press?

press?

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

18/31

What isa Zone?

Definition. A (clock) zone is a set z ⊆ (X → Time) of valuations
of clocks X such that there exists ϕ ∈ Φ(X) with

ν ∈ z if and only if ν |= ϕ.

Example:

0 1 2 3
0

1

2

x

y

z

is a clock zone by

ϕ = (x ≤ 2) ∧ (x > 1) ∧ (y ≥ 1) ∧ (y < 2) ∧ (x − y ≥ 0)

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

19/31

What isa Zone?

Definition. A (clock) zone is a set z ⊆ (X → Time) of valuations
of clocks X such that there exists ϕ ∈ Φ(X) with

ν ∈ z if and only if ν |= ϕ.

Example:

0 1 2 3
0

1

2

x

y

z

is a clock zone by

ϕ = (x ≤ 2) ∧ (x > 1) ∧ (y ≥ 1) ∧ (y < 2) ∧ (x − y ≥ 0)

• Note: Each clock constraint ϕ is a symbolic representation of a zone.

• But: There’s no one-on-one correspondence between clock constraints and zones.

The zone z = ∅ corresponds to (x > 1 ∧ x < 1), (x > 2 ∧ x < 2), . . .

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

19/31

MoreExamples: Zoneor Not?

•

0 1 2 3
0

1

2

x

y

•

0 1 2 3
0

1

2

x

y

•

0 1 2 3
0

1

2

x

y

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

20/31

Zone-based Reachabilit y

Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Assume a function

Poste : (L × Zones) → (L × Zones)

such that Poste(〈ℓ, z〉) yields the configuration 〈ℓ′, z′〉 such that

• zone z′ denotes exactly those clock valuations ν′

• which are reachable from a configuration 〈ℓ, ν〉, ν ∈ z,

• by taking edge e = (ℓ, α, ϕ, Y, ℓ′) ∈ E.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

21/31

Zone-based Reachabilit y

Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Assume a function

Poste : (L × Zones) → (L × Zones)

such that Poste(〈ℓ, z〉) yields the configuration 〈ℓ′, z′〉 such that

• zone z′ denotes exactly those clock valuations ν′

• which are reachable from a configuration 〈ℓ, ν〉, ν ∈ z,

• by taking edge e = (ℓ, α, ϕ, Y, ℓ′) ∈ E.

Then ℓ ∈ L is reachable in A if and only if

Posten
(. . . (Poste1

(〈ℓini, zini〉) . . .))

for some e1, . . . , en ∈ E.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

21/31

Zone-based Reachabilit y: In Other Words

Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Wanted: A procedure to compute
the set

• 〈 light , {0}〉

• 〈 bright , [0, 3]〉

• 〈 off , [0,∞)〉

• Set R := {〈ℓini , zini〉} ⊂ L × Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and
• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉) is not
already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such 〈ℓ, z〉 ∈ R and
e ∈ E are found.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

22/31

Stocktaking: What’sMissing?

• Set R := {〈ℓini , zini〉} ⊂ L × Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and
• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉) is not already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such 〈ℓ, z〉 ∈ R and e ∈ E are found.

Missing:

• Algorithm to effectively compute Poste(〈ℓ, z〉) for given configuration
〈ℓ, z〉 ∈ L × Zones and edge e ∈ E.

• Decision procedure for whether configuration 〈ℓ′, z′〉 is subsumed by a
given subset of L × Zones.

Note: Algorithm in general terminates only if we apply widening to zones,
that is, roughly, to take maximal constants cx into account (not in lecture).

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

23/31

What isa Good“ Post” ?

• If z is given by a constraint ϕ ∈ Φ(X), then the zone component z′ of
Poste(ℓ, z) = 〈ℓ′, z′〉 should also be a constraint from Φ(X).
(Because sets of clock valuations are soo unhandily. . .)

Good news: the following operations can be carried out by manipulating ϕ.

• The elapse time operation:

↑: Φ(X) → Φ(X)

Given a constraint ϕ, the constraint ↑ (ϕ), or ϕ ↑ in postfix notation, is
supposed to denote the set of clock valuations

{ν + t | ν |= ϕ, t ∈ Time}.

In other symbols: we wantJ↑ (ϕ)K = Jϕ ↑K = {ν + t | ν ∈ JϕK, t ∈ Time}.

To this end: remove all upper bounds x ≤ c, x < c from ϕ and add
diagonals.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

24/31

GoodNews Cont’d

Good news: the following operations can be carried out by manipulating ϕ.

• elapse time ϕ ↑ withJϕ ↑K = {ν + t | ν |= ϕ, t ∈ Time}

• zone intersection ϕ1 ∧ ϕ2 withJϕ1 ∧ ϕ2K = {ν | ν |= ϕ1 and ν |= ϕ2}

• clock hiding ∃x.ϕ withJ∃x.ϕK = {ν | there is t ∈ Time such that ν[x := t] |= ϕ}

• clock reset ϕ[x := 0] withJϕ[x := 0]K = Jx = 0 ∧ ∃x.ϕK

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

25/31

This isGoodNews...

...because given 〈ℓ, z〉 = 〈ℓ, ϕ0〉 and e = (ℓ, α, ϕ, {y1, . . . , yn}, ℓ
′) ∈ E we have

Poste(〈ℓ, z〉) = 〈ℓ′, ϕ5〉

where

• ϕ1 = ϕ0 ↑

let time elapse starting from ϕ0: ϕ1 represents all valuations reachable by

waiting in ℓ for an arbitrary amount of time.

• ϕ2 = ϕ1 ∧ I(ℓ)

intersect with invariant of ℓ: ϕ2 represents the reachable good valuations.

• ϕ3 = ϕ2 ∧ ϕ

intersect with guard: ϕ3 are the reachable good valuations where e is enabled.

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0]

reset clocks: ϕ4 are all possible outcomes of taking e from ϕ3

• ϕ5 = ϕ4 ∧ I(ℓ′)

intersect with invariant of ℓ′: ϕ5 are the good outcomes of taking e from ϕ3

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

26/31

Example ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0
• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ′) intersect with invariant of ℓ′

0 1 2 3
0

1

2

x

y

ϕ0

0 1 2 3
0

1

2

x

y

ϕ1

0 1 2 3
0

1

2

x

y

ϕ2

0 1 2 3
0

1

2

x

y

ϕ3

0 1 2 3
0

1

2

x

y

ϕ4

0 1 2 3
0

1

2

x

y

ϕ5

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

27/31

DifferenceBoundMatrices

• Given a finite set of clocks X , a DBM over X is a mapping

M : (X ∪̇ {x0} × X ∪̇ {x0}) → ({<,≤} ×Z ∪ {(<,∞)})

• M(x, y) = (∼, c) encodes the conjunct x − y ∼ c (x and y can be x0).

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

28/31

DifferenceBoundMatrices

• Given a finite set of clocks X , a DBM over X is a mapping

M : (X ∪̇ {x0} × X ∪̇ {x0}) → ({<,≤} ×Z ∪ {(<,∞)})

• M(x, y) = (∼, c) encodes the conjunct x − y ∼ c (x and y can be x0).

• If M and N are DBM encoding ϕ1 and ϕ2 (representing zones z1 and z2),
then we can efficiently compute M ↑, M ∧ N , M [x := 0] such that

• all three are again DBM,

• M ↑ encodes ϕ1 ↑,

• M ∧ N encodes ϕ1 ∧ ϕ2, and

• M [x := 0] encodes ϕ1[x := 0].

• And there is a canonical form of DBM — canonisation of DBM can be
done in cubic time (Floyd-Warshall algorithm).

• Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

28/31

Pros andcons

• Zone-based reachability analysis usually is explicit wrt. discrete locations:

• maintains a list of location/zone pairs or

• maintains a list of location/DBM pairs

• confined wrt. size of discrete state space

• avoids blowup by number of clocks and size of clock constraints
through symbolic representation of clocks

• Region-based analysis provides a finite-state abstraction, amenable to
finite-state symbolic MC

• less dependent on size of discrete state space

• exponential in number of clocks

–
1
3

–
2
0
1
3
-0

6
-1

8
–

S
zo

n
es

–

29/31

References

–
1
3

–
2
0
1
3
-0

6
-1

8
–

m
a
in

–

30/31

References

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme.
Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

–
1
3

–
2
0
1
3
-0

6
-1

8
–

m
a
in

–

31/31

