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Ledure 13. Regions andZones
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Last Lecture:

Started location reachability decidability (by region construction)

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What is a region? What is the region automaton of this TA?
What's the time abstract system of a TA? Why did we consider this?
What can you say about the complexity of Region-automaton based
reachability analysis?
What's a zone? In contrast to a region?
Motivation for having zones?
What's a DBM? Who needs to know DBMs?

Content:
Region automaton cont'd
Reachability Problems for Extended Timed Automata

Zones

Difference Bound Matrices
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The Location Reachahility Problem Cont’d
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in U(A), and

L Cini = {(@im‘, [szD} n COTLf(R(.A)) with I/im-(X) = {0}

Proposition. The transition relation of R(.A) is well-defined, that
is, independent of the choice of the representative v of a region [v].

331
The Region Automaton .
/W oo
4 )
Definition 4.29. [Region Autoghaton] The region automaton
R(A) of the timed automaton A is the labelled transition system
R(A) = (Conf(R(A)),Bn, {=ra)| @ € Ba},Cins) mm,,,%y{h
where J/[DJ
Conf(R(A)) ={{,[v]) |t € L,v: X — Time,v = I({)},
for each o € By,
(€, [V]) =Reay (€, [V]) if and only if (¢,v) = (¢, 1') [D’J
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Example: Region Automaton
press? )
z:=0 & xz <3
press?
>3
$r Jowk)<rf
U(A) b press
2 (bright, [z =0]) = - - -
Q/ (bright, [z = 0.1]) £ ... .
& d_ ho M-
Q‘/é(; (bright, [z = 1.0]) = ... n MM
_Q(a . press
- 3‘}3&; (bright, [a:fBO})
bright, [z = 3.001]) &£
press <| ht, [ZE :O]> < rg [m ]> )‘DIV&)Z?j
(off, [z = 0]) =...
. e (off e = 2. 9]) =
: B (off, [0 = 3.0]) 22 ..
E ©(off, [z = 3.001]) =2 ...
v 5/31
Remark
7 N
Remark 4.30. That a configuration (¢, [v]) is reachable in R(.A)
represents the fact, that all (¢, v) are reachable.
IAW: in A, we can observe v when
location £ has just been entered.
The clock values reachable by staying/letting time pass in £ are
not explicitly represented by the regions of R(A).
L Y,
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

U Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[J Lem. 4.20: location reachability
of A is preserved in U(A).

[ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

O Lem. 4.32: location reachability of /(A)
is preserved in R(A).

O Lem. 4.28: R(A) is finite.

Region Automaton Properties
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Lemma 4.32. [Correctness| For all locations ¢ of a given timed
automaton A the following holds:

¢ is reachable in U(.A) if and only if £ is reachable in R(A).

For the Proof:

o
<ly,> =<ely;>

~nc fao

3 , 1
1 Jv e 6> = <E 0> h
Definition 4.21. [Bisimulation] An equivalence relation ~ on val-
uations is a (strong) bisimulation if and only if, whenever
vy ~ vy and (£, 11) == (', 1)
then there exists v} with v/ ~ v and (€, v5) == (¢', V).
g /

T il

Lemma 4.26. [Bisimulation] = is a strong bisimulation.

7/31
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[J Lem. 4.20: location reachability
of A is preserved in U(A).

[ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

0 Lem. 4.32: location reachability of 2/(.A)
is preserved in R(A).

O Lem. 4.28: R(A) is finite.

The Number of Regions wouwidde ol X
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/ (nswnboes of olowssty 1. X)

Lemma 4.28. Let X be a sgt of clocks, ¢, € INg the maximal
constant for each z € X, and ¢ = max{c, | € X}. Then

(2¢ + Q)IXI (4ec + 3)%|X|'(|X|—1)

is an upper bound on the number of regions.

.

Proof: [Olderog and Dierks, 2008]

G | Gl RN | £ L] esaf . (e 3) 28 K1)

9/31

10/31



Observations Regarding the Number of Regions
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o Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

(o Ylg ROA) s fuile

o Note: the upper bound is a worst case, not an exact bound.

ey { (x<eg, F28 kil wals (wh, C=max fc,,,gf

11/3

Deadallity of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[0 Lem. 4.20: location reachability
of A is preserved in U(A).

[ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[ Lem. 4.32: location reachability of U/(.A)
is preserved in R(A).

[ Lem. 4.28: R(A) is finite.
12/31



Putting It All Together
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Let A= (L,B,X,I,FE {;,) be a timed automaton, ¢ € L a location.
R(A) can be constructed effectively.
There are finitely many locations in L (by definition).
There are finitely many regions by Lemma 4.28.
So Conf(R(A)) is finite (by construction).
It is decidable whether (Cjp;x of R(.A) is empty) or whether there exists
a sequence

(Cinis [Vin]) = Reay (01, [11]) SRy - R4y (Cns [Vn))

such that ¢,, = ¢ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

The Constraint Reachahility Problem
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Given: A timed automaton A, one of its control locations ¢, and a clock
constraint ¢.

Question: Is a configuration (¢, v) reachable where v |= ¢, i.e. is there
a transition sequence of the form

<€¢m,l/¢m‘> A, <517V1> 2z, <€2,V2> 23, 2, <£n7Vn> = <£7 V>

in the labelled transition system 7 (A) with v = ¢?

Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed
automata is decidable.

1331
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The Delay Operation

¢
y<1 x0
éjg—‘ﬁ._ (O——>0
 Let [v] be a clock region. =0 X&1q
r—

o We set P=x>0 a.‘(?}zz;

delay[v] = {V +t |V = v and t € Time}. /
. Pioswe?m

Y
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The Delay Operation

o Let [v] be a clock region.

o We set
delay[v] = {V' +t |V = v and t € Time}.

0 I
0 1

o Note: delay[v] can be represented as a finite union of regions.

x

For example, with our two-clock example we have

delaylr =y =0] =

— 13 - 2013-06-18 — Sdec —
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Zones

(Presentation following [Franzle, 2007)

Reall: Number of Regions
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Lemma 4.28. Let X be a set of clocks, ¢, € INg the maximal constant
for each z € X, and ¢ = max{c,; | x € X}. Then

(2¢ + 2)X! . (4 + 3)2XI-(XI-1)

is an upper bound on the number of regions.

o In the desk lamp controller,

press?

press? @ press?

z:=0 x<3

press?
>3

mady
laH{ regions are reachable in R(L), but we convinced ourselves that it's

actually only important whether v(z)-€ [0, 3] or v(z) € (3,00).
So: seems there are even equivalence classes of undistinguishable regions.

16/31
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Wanted: Zonesinstead o Regions
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e g automats,

o In R(E) we have transitionS'

), {03) 22 @, {01, (@), {01) 2 4@, (0, D),
. <@,to}> 175@, m> <06 > 4@, (12), <e>, S0 BLLO 721>

o (@ 01 T @, 23, (G, 0D T @, 3D
o Which seems to be a complicated way to write just:

(o {01 25 (G, [0,3))

o Can't we constructively abstract £ to:

@ {0y — = }{0} Presst (@ [0.3))

press7 2 press?

18/31

What isa Zone?

Definition. A (clock) zone is a set z C (X — Time) of valuations
of clocks X such that there exists ¢ € ®(X) with

v € zif and only if v = .

(135,16) s w 2

Example: y ((‘2'3 22) kust Loe
) /(xr , 9=lS) 18 i 2
1 z4
S~ (x,y1) s w2
is a clock zone by ’ o 1 2 :; v

p=(x22) A(x>1) 2 (427) 4 (y2) 2 (x-320)

013-06-18 — Szones

-13 -2
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What isa Zone?
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valuadns 9/ X

O~
Definition. A (clock) zone is a set z C (X — Time) of valuations
of clocks X such that there exists ¢ € ®(X) with

v € zif and only if v = .

s

gy clocty

Example:

is a clock zone by

(ashiaind;

(;44 &%4‘«% cé'M)

| | |

T T T

1 2 3 °

p=@<2)A@>DAY=DA(Y<2)A(z—-y>0)

o Note: Each clock constraint ¢ is a symbolic representation of a zone.

o But: There’s no one-on-one correspondence between clock constraints and zones.

The zone z = ) corresponds to (z > 1Az <1), (z>2ANx<2),...

More Examples. Zone or Not?
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|

W
2

T

3

T

N O

w

YES by

/ (x77) A (931) a (x-9%0) o (x-géz)
R'/

VES by
(x21)a (xe2) A (5=0)

ot w' pvpls cloce cnshiminds
(x:g:'l) v6t=443=2) & No

o
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Zone-based Reachabhility
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press?

Given:

bright) and initial configuration (@, {0})

>3

av eé,( ¥ —/LA ﬂo‘éiﬂa‘éq

Assume a function

Poste : (L x Zones) — (L x Zones)

such that Post.((¢, z)) yields the configuration (¢, 2’) such that
zone 2’ denotes exactly those clock valuations v/
which are reachable from a configuration (¢,v), v € z,

by taking edge e = (¢, , 0, Y, V') € E.

—
foly bl

2131

Zone-based Reachahlity
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press?

Given:

press? @ press?

x:=0 z <3

brigh) and initial configuration (e, {0})

press?

>3

aw eé,c 1[ e aitpuncton,

Assume a function /
PostZ: (L x Zones) — (L x Zones)

b4
such that Post((¢, z)) yields the configuration (¢, z’) such that
zone 2’ denotes exactly those clock valuations v/

which are reachable from a configuration (¢,v), v € z,
byytaking edge e = ({,c, 0, Y, V') € E.
Then ¢ € L is reachable in A if and only if l‘c‘% A’%""a)
Post,,, ( .. (POS'CE1 (<£ini, Z,'n,'>) - ))

for some eq,...,e, € E.
21/3:1



Zone-based Reachallity: In Other

Words

press?

Given:

>3

and initial configuration (@, {0})

aleedy readund (a»pf;wu(’m

(VA2
L4

Wanted: A procedure to compute
the set

(@ (o)
(@ 10.,3))
(@ 0.))

Set R := {(lini, zini)} C L x Zones
Repeat ¥ 2 "I(ZL;}
pick
a pair (¢, z) from R and
an edge e € E with source ¢
such that Post.({{, z)) is not
already subsumed by R
add Postc((¢, z)) to R
until no more such (¢, z) € R and
e € E are found.

— 13 — 2013-06-18 — Szones —

Socktaking: What’s Missng?

22/31

Set R := {(lini, zini)} C L X Zones
Repeat
pick
a pair (¢, z) from R and
an edge e € E with source /¢

add Poste((¢, z)) to R

such that Post.((¢, z)) is not already subsumed by R

until no more such (¢,z) € R and e € E are found.

Missing:

Algorithm to effectively compute Post, ((¢,

(¢,z) € L x Zones and edge e € E.

given subset of L x Zones.

that is, roughly, to take maximal constants c,

— 13 — 2013-06-18 — Szones —

z}) for given configuration

Decision procedure for whether configuration (¢’,2’) is subsumed by a

Note: Algorithm in general terminates only if we apply widening to zones,

into account (not in lecture).
2331



What isa Good*“ Post” ?
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If z is given by a constraint p € ®(X), then the zone component 2’ of
Poste (¢, z) = (¢, 2') should also be a constraint from ®(X).
(Because sets of clock valuations are soo unhandily. . .)
Good news: the following operations can be carried out by manipulating .
The elapse time operation:
1: d(X) — ¢(X)

Given a constraint ¢, the constraint T (¢), or ¢ T in postfix notation, is
supposed to denote the set of clock valuations ~

{v+t|vEepte Time}
In other symbols: we want )
—

[T =[p 1T ={r+t]velp]tecTime}. LI

To this end: remove all upper bounds z < ¢, x < ¢ from ¢ and add

diagonals.
2431

GoodNews Cont’d
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Good news: the following operations can be carried out by manipulating .
elapse time ¢ T with

[pTl={v+t|vEetec Time}

zone intersection ¢; A @2 with

[pr Ao = {v | v =1 and v = @0}

clock hiding 3 x.¢ with
[Fz.¢] = {v | there is t € Time such that v[z :=t] | ¢}

clock reset @[z := 0] with

[e[z:=0]] =[x =0ATx.¢]

25/31



Thisis Good News...
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...because given (¢, z) = (¢, o) and e = ({, 0, 0, {¥1,- .-, Yn},¥') € E we have

Post ((¢,2)) = (', o5)

where

Example

p1=¢o 1
let time elapse starting from ¢o: @1 represents all valuations reachable by
waiting in £ for an arbitrary amount of time.
2 =1 ANI(0)
i
intersect with invariant of £: @2 represents the reachable*good valuations.
w3 =pa Ny
intersect with guard: 3 are the reachable‘\good'vaIuations where e is enabled.
pa = p3lyr :=10] ... [yn := 0]
reset clocks: ¢4 are all possible outcomes of taking e from 3
@5 = pa N(U)

. S . Y 4 .
intersect with invariant of £': 5 are the\good/outcomes of taking e from (3

— 13 - 2013-06-18 — Szones —

pr =01 let time elapse.
w2 =1 ANI(¥) intersect with invariant of ¢
p3 =2 A intersect with guard
w1 = @3[y1 :=0]...[yn := 0] reset clocks

w5 =@a ANI(£') intersect with invariant of ¢/

Y Y Y

o
o

=}
o
=}
- @
o
=}

26/31
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Difference BoundMatrices
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dosjoint
Given a finite set ofclocks X, a DBM over X is a mapping

M : (X Ufzo} x X U{ao}) = ({<,<I x ZU{(<,00)})

M(z,y) = (~,c) encodes the conjunct x — y ~ ¢ (x and y can be zg).

Mi\ Xo| ¥ 4 5 f
Xo €1<,&x Z
: = (<z0)

28/31

Difference BoundMatrices
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Given a finite set of clocks X, a DBM over X is a mapping
M : (X U{zo} x X U{z0}) —» {<, <} xZU{(<,00)})

M(z,y) = (~, ¢) encodes the conjunct x — y ~ ¢ (x and y can be zg).

If M and N are DBM encoding 1 and @2 (representing zones z; and z3),
then we can efficiently compute M 1, M A N, M[z := 0] such that

all three are again DBM,
M 7 encodes 1 T,
M A N encodes p1 A 2, and
M|z := 0] encodes o[z := 0].
And there is a canonical form of DBM — canonisation of DBM can be

done in cubic time (Floyd-Warshall algorithm).

Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.

28/31



Pros andcons
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o Zone-based reachability analysis usually is explicit wrt. discrete locations:

maintains a list of location/zone pairs or

maintains a list of location/DBM pairs

confined wrt. size of discrete state space

avoids blowup by number of clocks and size of clock constraints
through symbolic representation of clocks

» Region-based analysis provides a finite-state abstraction, amenable to
finite-state symbolic MC
o less dependent on size of discrete state space

o exponential in number of clocks

29/31
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