Real-Time Systems

Ledure 12: Location Reachaklity
(or: The Region Automaton)
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The Location Reachahlity Problem

Given: A timed automaton A and one of its control locations /.
Question: Is £ reachable?
That is, is there a transition sequence of the form
A A X An
(lini, vo) = (€1, v1) =5 (2,v0) =5 .. = (ln, vn) =46, 0,7C
n system 7 (A)?

the labelled transi

« Note: Decidability is not soo obvious, recall that
« clocks range over real numbers, thus infinitely many configurations,
« at each configuration, uncountably many transitions RN may originate

« Consequence: The timed automata as we consider them here cannot
encode a 2-counter machine, and they are strictly less expressive than DC.
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Contents & Goals

Last Lecture:

* Networks of Timed Automata

« Uppaal Demo

Lecture:

Educational Objectives: Capabilities for following tasks/questions.
* What are decidable problems of TA?

» How can we show this? What are the essential premises of decidal
* What is a region? What is the region automaton of this TA?

» What's the time abstract system of a TA? Why did we consider this?

« What can you say about the complexity of Region-automaton based

ity?

reachability analysis?
« Content:
o “Fimed-Fransition-Syst imed

» Location Reachability Problem

« Constructive, region-based decidal

Deddability of The Location Reachahlity Problem

Claim: (Theorem 4.33)

The location reachability problem is deci for timed

Approach: Constructive proof.

» Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € Ny.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of As preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32; location reachability of U(A)
is preserved in R(A).

* Lem. 4.28: R(A) is fi
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The Location Reachability Problem

Withou Lossof Generality: Natural Constants

Recall: Simple clock constraints are ¢ = a ~ ¢ |z —y ~ ¢ | p Ay
with 2,y € X, c € Qf, and ~¢€ {<,>,<,>}.

o Let C(A) = {c€ Q] | cappears in A} — C(A) is ! (Why?)
o Let t4 be the least common multiple of the denominators in C(A).
o Let t.4 - A be the TA obtained from A by multiplying all constants by f4.
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Wthou Lossof Generality: Natural Constants

Simple clock constraints are p i=a ~c |z —y~c|pAp
with 2,y € X, c € QF, and ~€ {<,>,<, >}

Recal

o Let C(A) = {c € QF | c appears in A} — C(A) is finite! (Why?)
o Let t4 be the least common multiple of the denominators in C(A).
o Let t4-.A be the TA obtained from A by multipl

« Then:
o Cta-A) CNg

« A location ( is reachable in ¢4 - A if and only if £ is reachable in A.
A~

« That is: we can without loss of generality in the following consider only
timed automata A with C(A) C INg.

Definition. Let z be a clock of timed automaton A (with C'(A) C
INg). We denote by ¢, € Ny the largest time constant c that
appears together with x in a constraint of A.

1g all constants by ¢ 4.

Deddability of The Location Reachahility Problem
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Claim: (Theorem 4.33)
The location reacha

y problem is decidable for timed automata.

Approach: Constructive proof.

o

Observe: clock constraints are si
— w.l.o.g. assume constants ¢ € INo.

o

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

-

Lem. 4.20: location reachability
of A is preserved in U(A).

-

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[=]

Lem. 4.32: location reachability of U/(A)
is preserved in R(A).

[ Lem. 4.28: R(A) is finite.

Helper: Relationd Compasition

Recall: T(A) = (Conf (A), Time U Bxy, {5| € Time U Bn}, Cini)

A . . . N
« Note: The = are binary relations on configurations.

Definition. Let A be a TA. For all (¢y,v1), (f2,12) € Conf(A),
{Bm) 2 0 255 {fs. )
if and only if there exists some (¢, ") € Conf(A) such that

(b, 1) 25 (V) and (¢,0') 225 (b5, ).

0 6,33 T3
Helper: Relationd Composition Time-abstract Transition S/stem Example 7 (Lv) = (¢, /) iff 3t € Time o (L) 5 0 2 (¢, 1) 7
press?
Recall: = Time U By, {2 Time U By}, Cini _
clk )= (@leh T By =1 A E Wiel By Cir) Definition 4.19. [Time-abstract transition system] % 6
by N . . . Let A be a timed automaton.
« Note: The 2 are binary relations on configurations. The time.abstract transition system L(A)
is obtained from 7T (A) (Def. 4.4) by taking - i o
S . g [, 357 —>
Definition. Let A be a TA. For all (¢, 1), {2,) € Conf(A), U(A) = (Conf(A), Bor, {=2] @ € Bur}, Con) x> Ll ezs> WO, 405 & o dily cinclidebe, bt w0 & ol
B, Nem m T
(E1,01) 25 0 22 (3, 15) where . £4,%0 Ly A{.&#ev Yes. ﬁmﬁw‘imakine.w 55 ingles o s il £50
) . oY
if and only if there exists some (£, ') € Conf(A) such that =>C Conf(A) x Conf (A) Cofxafy =l xe5> 0, cdr=6>="30 ! ) e
\ N is defined as follows: Let (£,v), (¢',v') € Conf(A) be configura- o) 5 Lo A ool go fon o h Jop w2 b,
by, 1) 25 (€,0) and (€, 1) 225 (L3, v3). tions of A and a € Bz an action. Then !
\
i (tv) =5 (0,0) P Arsr-\xis W.WAF«J X=18) WS, 40 aud x7preg!
if and only if there exists ¢ € Time such that 7 2 .
Remark. The following property of time additivity holds. 8 L Lo, k=) S dolen, x:3) WDy wo ety olpe A 4ol
bt _ otk i () 5 0 % (V). g
Yit1,ts € Time: =5 0 2 = 2172 o .
833 933 ! 10733




Location Reachatility is preserved in U/(A)

Lemma 4.20. For all locations ¢ of a given timed automaton A
the following holds:

eachable in 7(A) if and only if £ is;reachable in U(A).
. =
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Distinguishing Clock Valuations: One Clock

~ Sdec -

« Assume A with only a single clock, i.e. X = {x} (recall: C(A) C N.)
£3A%,
+ A could detect, for a given v, ey OFB

whether v(z) € {0,....c,}.
x> 1ake2

A cannot distinguish v, and 1, 05 O0————0
if vi(x) € (k,k+1),i=1,2,
and k€ {0,....¢c, —1}.

A cannot distinguish vy and vy eg. Dk\wo

if vi(2) > cay i = 1,2,

If ¢, > 1, there are (2¢, + 2) equivalence classes:

{0} 0,1, 41}, (1,2), . {ea} (e, 00)}

If v1(z) and va(z) are in the same equivalence class,
then vy and v are indistiguishable by A.

Deddability of The Location Reachahility Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

o

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INg.

o

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, st inite-state.

Lem. 4.20: location reacha
of A is preserved in U(A).

=]

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[=]

Lem. 4.32: location reachability of U/(A)
is preserved in R(A).
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Distinguishing Clock Valuations: Two Clocks
e X={z.yh e, =1¢,=1
0041204921 A y>x
! N
—
X=04 gz T
‘ 2921 S~ pb)eizs
V)= 035
X0 A 0Lyt
! 0
. xr
14/ b xé.&é{\o ‘ﬂns 1 o

Abera

press?

Indistingushabe Oo:z@:&.o:m?

U | (g =0y oo SRl

. /
T (bright,x = 0.1) 25 ..._t:z M@s;ae

7 (brightr = 1.0) 25 2051 yeo xx

T lbright o= 30) B s xer v
© X30Axer 47
= :i%.rs —3.001) 2% ..Tw By
- = (light, = = 0) - P%\.\@
X (offx = 0) = . e Yo
x e -t
¢ o (offr=29) K% *&ﬂ“#
3 " a;
i Lo (om0 B
H (off,z = u.@.o: T
0 (off, x = 127.1415) 2= .
, o 13
Helper: Floor andFraction
e Recall:
Each ¢ € Ry can be split into
o floor |q] € Ny and
« fraction frac(q) € [0,1)
such that
q = |q] + frac(q).
w, 16/33



An Equivalence-Relation onValuations

( )

Definition.  Let X be a set of clocks, ¢, € Ny for each clock
x € X, and vy, v, clock valuations of X.
We set vy = v; iff the following four conditions are satisfied.
(1) Forall z € X,

[v1(x)] = va(x)] or both 11 (z) > c, and va(z) > c;.
(2) Forall € X with v4(2) < c.,

frac(vi(x)) = 0 if and only if frac(va(x)) = 0.

(3) Forall z,y € X,

(@) =1 @) = (@) - 12()]
or both [u1(z) — v1(y)| > ¢ and |va(x) — 1a2(y)| > c.

(8) Forall z,y € X with —c < vi(z) —vi(y) < c,

Jrac(va (@) — va(y)) = 0 if and only if frac(ve(z) — va(y)) = 0.

Where ¢ = max{cs, ¢, }. )

\_

The Region Automaton

Definition 4.29. [Region A ] The region
R(A) of the timed automaton A is the labelled transition system

R(A) = (Conf (R(A)), Bat, { = r(ay| @ € Bu}, Cins)

Proposition. The transition relation of R(A) is well-defined, that
is, independent of the choice of the representative v of a region [v/].

JeRreses
where \ A U(A):

IRGCIC

(1) Vo e X: ()] = |
@) VzeX:nm(@) <er
= (frac(n(2)) =0 4= frac(va(x)) = 0)
@) Yo,y € X : [1(2) - n(y)] = [va(z) - va(y)]
V (jri(2) — 1 (y)] > e Ava(x) — v2(y)] > )

Example: Regions

@) Vo,yeX:—c<n(@) -np)<c =

“h Urac(ia () = (1) = 0 <= frac(a(a) = 120) = 0)

LIRS
mn SV
Qvv
B)v
)V

6 Oyl-vs4) -0 s-025)=-1
W hg)=as [ oxles )

173 yras gr o 1835

Example: Region Automaton

press?

o Conf(R(A)) = {{t.[V]) | € € L.v: X — Time,v |= 1(0)}, o (bright, = = 0) =%
« for each o € B o] . T e
for each 71, P 5 (bright,z = 0.1) = -
(. [V]) SRy (€ [V]) if and only if (¢,) == (¢',) NV (bright, « — 1.0) 2= .
. B rprgandy . - ress
in U(A), and o g, e (bright, z = 1.31415) 2% ...
© Cins = {{lmis ini))} 0 Conf (R(A)) with vins(X) = {0} | &7

(off,x = 2.0) == ..

Lo (offx = 3.0) B2 ..

) (off,x = 127) =5 ..
.- 213

203

Regions

alence relation.

Proposition. 2 is an eq

on 4.27. For a given valuation v we denote by [v] the

equivalence class of “ We call equivalence classes of = re,

(

' v}

1973

Remark

Remark 4.30. That a configuration (¢, [v]) is reachable in R(A)
represents the fact, that all (¢, ) are reachable.

IAW: in A, we can observe v when

location £ has just been entered.
The clock values reachable by staying/letting time pass in { are
not explicitly represented by the regions of R(A).

22m



Deddability of The Location Reachakility Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.
[ Observe: clock constr:
— w.l.o.g. assume constants ¢ € No.

o

Def. 4.19: time-abstract trans
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

]

Def. 4.29: region automaton R(A) —
: equivalent configurations collapse into regions

{1 Lem. 4.32: location reachability of 2/(.A)
is preserved in R(A).

o

Lem. 4.28: R(A) is

The Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € Ny the maximal
constant for each # € X, and ¢ = max{c, | € X}. Then

(2¢+2)I X1 . (4¢ + 3)2/XI-0XI-D)

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

~ Sdec -
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Region Automaton Properties
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Lemma 4.32. [Correctness] For all locations ¢ of a given timed
automaton A the following holds:

£ is reachable in U(A) if and only if £ is reachable in R(A).

For the Proof:

Definition 4.21. [Bisimulation] An equivalence relation ~ on val-
uations is a (strong) bisimulation if and only if, whenever

v ~ o and (£,1) == (¢',v])

then there exists 15 with v ~ v} and (£, va) == (', v}).

Lemma 4.26. [Bisimulation] = is a strong bisimulation.

Observations Regarding the Number of Regions

+ Lemma 4.28 in particular tells us that each timed automaton (in our
on) has ely many regions.

« Note: the upper bound is a worst case, not an exact bound.

2473
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Deddability of The Location Reachakility Problem

Claim: (Theorem 4.33)
The location reachabili

problem is decidable for timed

Approach: Constructive proof.

o

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

o

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay tran:

Lem. 4.20: location reachability
of Ais preserved in U(A).

[m]

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[m]

Lem. 4.32: location reachability of 2/(.A)
is preserved in R(A).

o

Lem. 4.28: R(A) is

25/33

Deddability of The Location Reachalility Problem

Claim: (Theorem 4.33)

The location re problem is deci for timed

Approach: Constructive proof.

Observe: clock constraints are simple
— w.lo.g. assume constants ¢ € INy.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

o

Lem. 4.20:
of A

o

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

o

Lem. 4.32: location reachability of 1/(.A)
is preserved in R(A).

0 Lem. 4.28: R(A) is finite.
283



Putting It All Together Putting It All Together The Constraint Reachabhility Problem

Let A= (L,B,X,I,E, (;,;) be a timed automaton, ¢ € L a location. Let A= (L,B,X,I,E. {;;;) be a timed automaton, ¢ € L a location. » Given: A timed automaton A, one of its control locations ¢, and a clock

R(A) can be constructed effectively.

There are fi

tely many locations in L (by de

n).

There are finitely many regions by Lemma 4.28.
So Conf(R(A)) is finite (by construction).

It is decidable whether (Cini¢ of R(A) is empty) or whether there exists
a sequence

(Cinis Wina]) S reay (0, 04]) S reay - S reay (Ens ]

such that £, = ¢ (reachability in graphs).

295
The Constraint Reachahility Problem
+ Given: A timed automaton A, one of its control locations £, and a clock
constraint .
Is a configuration (£, ) r where v = ¢, ie. is there
n sequence of the form
(i vins) 25 (01,00) 25 (b 0) 220 (6,0, = (L)
in the labelled transition system T(A) with v = ?
» Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.
; Theorem 4.34. The constraint reachability problem for timed
automata is decidable.
R 30/
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« R(A) can be constructed effectively.

« There are finitely many locations in L (by definition).

« There are finitely many regions by Lemma 4.28.

« So Conf(R(A)) is finite (by construction).

o It is decidable whether (C'yi; of R(A) is empty) or whether there exists
a sequence

(Liniy Wina]) S reay (1)) S reay - ey (6

such that ¢, = ¢ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

2933
The Delay Operation
« Let [1] be a clock region.
* We set
delay[v) ={v'+t | = v and t € Time}.
1
0
§ 0 1
¥ 313

constraint .

+ Question: Is a configuration ((,v) reachable where v = ¢, i.e. is there

a transition sequence of the form
A A A An
(Cini Vini) =5 (€1,01) =5 {l2,v2) = o = (b, vm) = (Lv)

in the labelled transition system 7 (A) with v |= 7

» Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

30533

The Delay Operation

« Let [1] be a clock region.
« We set
delay[v) = {v/ +t| v = v and t € Time}.

0 1
» Note: delay[v] can be represented as a finite union of regions.

For example, with our two-clock example we have

delaylz = y = 0] = N
z
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