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Reall: Deddabhlity of Satisfiahilit y/Reali sahility from O

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

Contents & Goals

Last Lecture:
« RDC in discrete time
 Started: Satisfiability and realisability from 0 is decidable for RDC in discrete
time

This Lecture:
» Educational Obje ies for following tasks/questions.
» Facts: (un)decidability properties of DC in discrete/continuous time.
ity proofs?

© What's the idea of the considered (un)decidal

 Content:
 Complete: Satisfiability and realisability from 0 is decidable for RDC in
discrete time
« Undecidable problems of DC in continuous time
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RDC in Discrete Time Cont’d

Sketch: Proof of Theorem 3.6

« give a procedure to construct, given a formula F, a regular language
L(F) such that

,n] |= F if and only if w € L(F)

where word w describes Z on [0,7]
(suitability of the procedure: Lemma 3.4)

« then F s satisfiable in discrete time if and only if £(F) is not empty
(Lemma 3.5)

» Theorem 3.6 follows because
o L(F) can effectively be constructed,

« the emp problem is for regular |



Construction of £(F

 ldea:
« alphabet X(F) consists of basic conjuncts of the state variables in F,
 a letter corresponds to an interpretation on an interval of length 1,
= a word of length n describes an interpretation on interval [0,7].
« Example: Assume F contains exactly state variables X, Y, Z, then
N(F)={XAYAZXANYA-ZXNYANZXNANY N-Z,
“XANYNZ~XANYN-Z,~XAN-YNZ~-XN-Y A-Z}.
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Sketch: Proof of Theorem 3.9

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

« kern(L) contains all words of L whose prefixes are again in L.
o If L is regular, then kern(L) is also regular.

o kern(L(F)) can effectively be constructed.

« We have

Lemma 3.8. For all RDC formulae F, F is realisable from 0 in
discrete time if and only if kern(L(F)) is infinite.

« Infinity of regular languages is decidable.
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Construction o £(F) more Formally — Xa ¥

fes (AnaPa2)v (Xa2a72)

= ai...a, € B(F)* with n > 0

describes a discrete interpretation Z on [ andonly if . WF(Ka¥]
Vi €{L,...,n} Vi elj—1,40: Tyl @) = 1. §ixan2)
(o 2)f

Forn =0 we put w =¢.

« Each state assertion P can be 5;&2@&: equivalght disjunctive
normal form \/[_, a; with a; € £(F).
o Set DNF(P) := {ay, m} (S B(F)). T s, gl of bt a4
» Define £(F) inductively: P
£(1p)) = DF(R)T (egelas o)
LER) =BFINLE) (g el
L(FyV Fy) = L(T) v (T,), (~-—)

L(Fy 3 Fy) = @(F) 2B e:nam,..b'h
8/33
(Variants of) RDC in Continuous Time
1273

Lemna 34

Lemma 3.4. For all RDC formulae F, discrete interpretations Z,
n >0, and all words w € X(F)* which describe Z on [0,7],

Z,[0,n] = F if and only if w € £(F).
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Reall: Restricted DC (RDC)

Fu=[P]|-F | F\VFy | F i Fy
where P is a state assertion, but with boolean observables only.
From now on: “RDC + ¢ = z,Va"
Fu=[P||-F |F\VE | FiF | (=1|(=z|VzeF
133



Undeddability of Saisfiahilit y/Reali sability from O

Theorem 3.10.
isability from 0 problem for DC with continuous time is
not even semi-decidabl

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecid-
able.

2CM Configuations and Computations e s

.\r\_\lﬁﬁe of connmbis 75

« a configuration of M is a triple K = (¢,n1,n2) € @ x Ny x INo.

« The transition relation “~" on configurations is defined as follows:

Command | Semantics: K + K’
qincy g (g:n1m2) - (@1 + 1,nz)
tdecy i q',q" (¢,0,n2) F (¢',0,n2)
(g,m1 +1,m2) = (q",m1,m2)
qiincs g (g.m1,m2) = (¢, 1, m2 + 1)
q:deca:q'q" (g,11,0) - (¢/,71,0)
(g,n1,m2 + 1) = (q",n1,m2)
« The (1) computation of M is a finite sequence of the form ("M halts")

Ko = (90,0,0) F Ky - Ko b - (qn, n1,n2)

or an infinite sequence of the form (“M diverges")

Ko = (q0,0,0) F K1 F Ko b ..

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

« Given a two-counter machine M with final state g,
« construct a DC formula F(M) := encoding(M)
o such that
M diverges if and only if the DC formula
F(M) A =0fgpin]
is realisable from 0.

o If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn't).
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2CM Example
* M =(Q. 40, 4pin; Prog)
« commands of the form ¢ : inc; : ¢’ and q : dec; : e{1,2}
« configuration K = (¢,n1,n2) € Q x N x Ny
Command | Semantics: K I- K’
giincyiq (g,m1,m2) = ('m0 + 1,ma)
q:decy:q'q" (2,0,m2) = (¢, 0,m2)
. (a,m1 +1,n2) F (", m1,m2)
q:inca g (¢:m1,m2) F (¢ nymz + 1)
q:decy:q'\q" (@ 0) F (q',m,0)
(,n1,m2 + 1) F (¢",m1,m2)
Q=lopugel | Qelgaged G
foy~ g0 1,0 fag= g0 iz 903 H
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Reaall: Two-courter machines

2013

A two-counter machine is a structure
M =(2Q, 90, 4fin, Prog)

where skt shle of s

« Qs a finite set of states,

« comprising the ini T and Y€ final state g,
o Prog is the machi i.¢/ a finite set of commands of the form

g g’ ief{l2)

p2iged

+ We assume deterministic 2CM: for each ¢ € Q, at most one command
starts in ¢, and ggn is the only state where no command starts.
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Reducing Divergenceto DC reali sahility: |dea In Pictures
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Reducing Divergenceto DC realisahility: |dea

« A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

= An interpretation on ‘Time' encodes the computation of M if
« each interval [4n,4(n + 1)], n € Ny, encodes a configuration K,

« each two subsequent intervals [4n,4(n + 1)] and [4(n +1),4(n +2)],
n € Ny, encode configurations K, - K,, ;1 in transition relation.

« Being encoding of the run can be characterised by DC formula F/(M).

« Then M diverges if and only if F(M) A =0 [qs,] is realisable from 0.

2073

Initial and General Configuations

init = (0 >4 = [qo]" s [B]" 5 [X]": [B]"; true)

keep == O([Q1'; [BV 11" [X]' i [BV L]t =4
= (=4;[Q]":[BVCi]': [X]':[BVCa]h)
where Q := ~(X vV C; V2V B).
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Encoding Configuations

el of bl of A
= We use Obg/ {obs} with
D(obs) = Qp U {Ch, Ca, B, X}
~ At pnion
A o Tbs=gl
Examples:
K =(q,2,3)

A
(=1

nols A H
(=1 (=1 (=1

* Ko = (9,0,0)

or, using abbreviations, [¢0]" ; [B]"; [X]"; [B]".

Auxili ary Formula Pattern copy

Phs Ve, de (FAL=c);([PLV--- VP AL=d);[P];
’ = (=c+d+4;[P]

AVe,deD(FAL=c

)i

[PV VP ANE=d); [P 5

= f=ct+d+4;[P]

R

\ T (Pv-vi1
VedO(rg——r 0o &v

L=crd+¢

=4

=4

1

I
fql [B1:[Ch1: BT [CiT: B X1 v [B1:[C215 [B]: G215 [B]: [Cal 5 [B]
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Construction o F'(M)

20130514 - Scont

In the following, we give DC formulae describing

o the

« the general form of configurations)

al configuration,

 the transitions between configura
« the handling of the final state.

F(M) is the conjunction of all these formulae.
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(q) inc; - () (Increment) € A,

013,

(i) Change state
O(q]*: [BV O s [XT 5 [BY Gl il =4 = 0=4;[q']"; true)

a1, Thtl) (%1 B,
Dm A [E53

2 g7, e [
=4 (=1

(ii) Increment counter

VdeO([q]': [B1:(t =0V [C1]:[-X]): [X]' i [BV ]t it=4
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q : incy : ¢ (Increment)

(i) Keep rest of first counter T M.mnw
—_—T
copy([q]' s [BV G113 [C1].{B, C1})

(ii) Leave second counter unchanged
copy([q]": [BV C11: [X1',{B.C2})
—_—

F 78, 8]
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Sdisfiability

 Following [Chaochen and Hansen, 2004] we can observe that
M halts if and only if the DC formula F(M) A Oggn] is satisfiable.
This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

« Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F(M) A ~0[qgn] is not satisfiable.

« Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.

293

q: decy : ¢, ¢" (Deaement)

(i) If zero

Ol [B1 5 (X1 [BV Cal 30 =4 = (=43 [¢]'; [B]'; truc)

(i) Decrement counter
vdeO([q)'; ([Bl: [Crl AL=d); [B]:[BVCi1: [X]'5[BV Co]' =4
= (=4;[q"1": [B]"; true)

) Keep rest of first counter
copy([q]* s [B]: [C1]; [B1].{B.C1})
(iv) Leave second counter unchanged

copy([q]" s [BV C11: [X]' (B, Ca})
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Vali dity
« By Remark 2.13, F'is valid iff =F is not satisfiable, so
Corollary 3.12.  The validity problem for DC with continuous
time is undecidable, not even semi-decidable.
« This provides us with an alternative proof of Theorem 2.23 ( “there is no
sound and complete proof system for DC"):
» Suppose there were such a calculus C.
» By Lemma 2.22 it is semi-decidable
whether a given DC formula F' is a theorem in C.
3 « By the soundness and completeness of C,
< F'is a theorem in C if and only if F is valid.
z o Thus it is semi-decidable whether F is valid. Contradiction.
. 30/

Final Sate

copy([asn]" s [BV Ci15 [X]5[BV Co1', {gsm, B, X, C1, Co})
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Discusson
« Note: the DC fragment defined by the following grammar is sufficient
for the reduction
Fu=[P||-F |RVE|FiF|(=1|(=x|Yze
P a state assertion, x a global variable.
» Formulae used in the reduction are abbreviations:
(=4 =1 =1;0=1;0=1
£2>4 < L=4;lrue
l=x+y+4 <= (=zx;l=y;(=4
« Length 1 is not necessary — we can use £ = z instead, with fresh z.
H » This is RDC augmented by “/ = 2" and “Vz",
which we denote by RDC + ( = z,V .
' 31m
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