Real-Time Systems

Lecture 7: DC Properties II

2013-05-14

Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- RDC in discrete time
 Started: Satisfiability and realisability from 0 is decidable for RDC in discrete time

RDC in Discrete Time Cont'd

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 Facts: (un)decidability properties of DC in discrete/continuous time.
 What's the idea of the considered (un)decidability proofs?

Complete: Satisfiability and realisability from $\boldsymbol{0}$ is decidable for RDC in discrete time

Undecidable problems of DC in continuous time

Recall: Proof Sketch

Recall: Decidability of Satisfiability/Realisability from 0

 $\label{thm:condition} Theorem \ 3.6.$ The satisfiability problem for RDC with discrete time is decidable.

 $\label{eq:theorem 3.9.} The \ realisability \ problem \ for \ RDC \ with \ discrete \ time \ is \ decidable.$

RIX follows to the following to the foll

5/33

Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F , a regular language $\mathcal{L}(F)$ such that

 $\mathcal{I}, [0,n] \models F \text{ if and only if } w \in \mathcal{L}(F)$

where word w describes $\mathcal I$ on [0,n] (suitability of the procedure: Lemma 3.4)

- then F is satisfiable in discrete time if and only if $\mathcal{L}(F)$ is not empty (Lemma 3.5)

- * Theorem 3.6 follows because $* \ \mathcal{L}(F) \ \text{can effectively be constructed},$ * the emptyness problem is decidable for regular languages.

Construction of $\mathcal{L}(F)$

- * alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F, * a letter corresponds to an interpretation on an interval of length 1, * a word of length n describes an interpretation on interval [0,n].
- Example: Assume F contains exactly state variables X,Y,Z, then
- $\Sigma(F) = \{X \wedge Y \wedge Z, X \wedge Y \wedge \neg Z, X \wedge \neg Y \wedge Z, X \wedge \neg Y \wedge \neg Z,$ $\neg X \wedge Y \wedge Z, \neg X \wedge Y \wedge \neg Z, \neg X \wedge \neg Y \wedge Z, \neg X \wedge \neg Y \wedge \neg Z \}$

7/33

Sketch: Proof of Theorem 3.9

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

(Variants of) RDC in Continuous Time

- kern(L) contains all words of L whose prefixes are again in L.
- If L is regular, then kerm(L) is also regular.
- $kem(\mathcal{L}(F))$ can effectively be constructed. We have
- Lemma 3.8. For all RDC formulae F,F is realisable from 0 in discrete time if and only if $kern(\mathcal{L}(F))$ is infinite.
- Infinity of regular languages is decidable

11/33

Construction of $\mathcal{L}(F)$ more Formally Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^n a_i$ with $a_i \in \Sigma(F)$. Definition 3.2. A word $w=a_1\dots a_n\in E(F)^*$ with $n\geq 0$ describes a discrete interpretation $\mathcal I$ on $[0,\eta]$ if and only if For n=0 we put $w=\varepsilon.$ $\forall j \in \{1,\dots,n\} \ \forall \, t \in]j-1,j[:\mathcal{I}[\![\mathbf{k}_j]\!](t)=1.$ X174 (\$17478) V(27418) \(\frac{\partial \partial \par

• Set $DNF(P) := \{a_1, \ldots, a_m\} \subseteq \Sigma(F)$. Define L(F) inductively:

finite words , bought at board over

 $\mathcal{L}(|P|) = \text{DMF}(P)^{+}$ $\mathcal{L}(-F_{1}) = \mathcal{L}(\mathcal{T})^{+} \setminus \mathcal{L}(\mathcal{T}_{2})$ $\mathcal{L}(F_{1} \vee F_{2}) = \mathcal{L}(\mathcal{T}_{1}) \cup \mathcal{L}(\mathcal{T}_{2})$ $\mathcal{L}(F_{1}; F_{2}) = \mathcal{L}(F_{1}), \mathcal{L}(\mathcal{T}_{2}).$

(regulas laguage)
(royales regulas)
(- - -)
(- - -)

元子。

Lemma 3.4

Lemma 3.4. For all RDC formulae F, discrete interpretations \mathcal{I} , $n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe \mathcal{I} on [0,n], $\mathcal{I}, [0,n] \models F$ if and only if $w \in \mathcal{L}(F)$.

Post: Stanchurd induction $\underbrace{\frac{\log \mathcal{F}_{\mathcal{F}}(P)}{\log \mathcal{F}_{\mathcal{F}}(P)}}_{\text{Normal Distance } D_{\mathcal{F}}, \text{ and } \mathbb{R}^{2}}_{\text{Out}} = \mathcal{F}_{\mathcal{F}}(P), \text{ of } \mathbb{R}^{2}$

Recall: Restricted DC (RDC)

where ${\cal P}$ is a state assertion, but with boolean observables only. $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \vee F_2 \mid F_1 \mathrel{;} F_2$

From now on: "RDC + $\ell = x, \forall x$ "

 $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \vee F_2 \mid F_1 \text{ ; } F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1$

Undecidability of Satisfiability/Realisability from 0

Theorem 3.10. The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11.

The satisfiability problem for DC with continuous time is undecidable.

14/33

2CM Configurations and Computations and solet ullet a configuration of ${\mathcal M}$ is a triple $K=(q,n_1,n_2)\in {\mathcal Q} imes {\mathbb N}_0 imes {\mathbb N}_0.$

2CM Example

* $\mathcal{M} = (Q, q_0, q_{0m}, Proy)$ ** commands of the form q_i : $i\alpha_{i}$; i' and q_i : $d\alpha_{i}$; i', i', $i \in \{1,2\}$ ** configuration $K = (q_i \gamma_1, \gamma_2) \in Q \times N_0 \times N_0$ **Command Semantics: $K \vdash K'$

Semantics: $K \vdash K'$ $(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$ $(q, 0, n_2) \vdash (q', 0, n_2)$ $(q, 0, n_3) \vdash (q'', n_1, n_2)$

- The transition relation "\(\dagger\)" on configurations is defined as follows:
- $q: inc_2: q'$ $q: dec_2: q', q''$ $q: dec_1: q', q''$ $(q, n_1, n_2) \vdash (q', n_1, n_2 + 1)$ $(q, n_1, 0) \vdash (q', n_1, 0)$ $(q, n_1, n_2 + 1) \vdash (q'', n_1, n_2)$ $(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$ $(q, 0, n_2) \vdash (q', 0, n_2)$ $(q, n_1 + 1, n_2) \vdash (q'', n_1, n_2)$
- The (!) computation of M is a finite sequence of the form ("M halts")

 $K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \dots \vdash (q_{fin}, n_1, n_2)$

 $K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \dots$

Ry= { 90, 76.}

(9,7,0)
(9,7,0)
(9,7,0)
(9,7,0)
(9,7,0)
(4,7,0)
(4,7,0)
(4,7,0)
(4,7,0)

 $q:inc_2:q'$ $q:dec_2:q',q''$ $q:inc_1:q'$ $q:dec_1:q',q''$

or an infinite sequence of the form ("M diverges")

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

A two-counter machine is a structure Recall: Two-counter machines

 $\mathcal{M} = (\mathcal{Q}, q_0, q_{fin}, Prog)$

start state of command

Q is a finite set of states,

- ullet Given a two-counter machine ${\cal M}$ with final state $q_{fin},$
- \bullet construct a DC formula $F(\mathcal{M}) := encoding(\mathcal{M})$
- such that ${\mathcal M}$ diverges $\,$ if and only if $\,$ the DC formula

 $F(M) \land \neg \Diamond \lceil q_{fin} \rceil$

 If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn't). is realisable from 0.

15/33

e comprising the initial state q_0 and the final state q_{fin} e. Prog is the machine program, i.e. a finite set of commands of the form q; imq:q' and q:deq:q',q'', $i\in\{1,2\}$. 2,2,9,€ €

• We assume deterministic 2CM: for each $q \in \mathcal{Q}$, at most one command starts in q, and q_{g_R} is the only state where no command starts.

Reducing Divergence to DC realisability: Idea In Pictures

exists T. Ko+K++k1... ("I ducibes m") 2(M of director of the doctor THE FOR , 70 FR.] -[nd, last) of and [last) of last) of I succeed an influence has chaich are in 1-selection.

if this is positive,

It shall there. FULL) intuitively require -[0,d] encoles (40,0,0) -[n.d, (m+1)d] encodes d (Onfiguertian

Reducing Divergence to DC realisability: Idea

- * A single configuration K of $\mathcal M$ can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.
- An interpretation on 'Time' encodes the computation of M if * each interval $[4n,4(n+1)], \ n \in \mathbb{N}_0$, encodes a configuration K_n .
 * each two subsequent intervals [4n,4(n+1)] and [4(n+1),4(n+2)], $n \in \mathbb{N}_0$, encode configurations $K_n \vdash K_{n+1}$ in transition relation.
- Being encoding of the run can be characterised by DC formula F(M).
- Then M diverges if and only if F(M) ∧ ¬◊[q_{fin}] is realisable from 0.

Encoding Configurations to a fine the first of the configuration of the $\begin{pmatrix} [B]:[C_1]:[B]:[C_1]:[B] \\ \wedge \\ \wedge \\ (=1) \end{pmatrix}; \begin{pmatrix} [X] \\ \wedge \\ (=1) \end{pmatrix}; \begin{pmatrix} [X] \\ \wedge \\ (=1) \end{pmatrix}; \begin{pmatrix} [B]:[C_2]:[B]:[C_2]:[B] \\ \wedge \\ (=1) \end{pmatrix}$ • K = (q, 2, 3)or, using abbreviations, $\lceil q_0 \rceil^1$; $\lceil B \rceil^1$; $\lceil X \rceil^1$; $\lceil B \rceil^1$.

20/33

Auxiliary Formula Pattern copy

Initial and General Configurations

 $init : \Longleftrightarrow (\ell \geq 4 \implies \lceil q_0 \rceil^1 \, ; \, \lceil B \rceil^1 \, ; \, \lceil X \rceil^1 \, ; \, \lceil B \rceil^1 \, ; \, true)$

 $copy(F, \{P_1, \dots, P_n\}) : \iff$ ${}_{\mathbf{A}} \, \forall \, c,d \bullet \Box ((F \wedge \ell = c) \, ; (\lceil P_1 \vee \cdots \vee P_n \rceil \wedge \ell = d) \, ; \lceil P_n \rceil \, ; \ell = 4$ $\checkmark \ \forall c,d \bullet \Box ((F \land \ell = c) \, ; (\lceil P_1 \lor \dots \lor P_n \rceil \land \ell = d) \, ; \lceil P_1 \rceil \, ; \ell = 4)$ - bimula state assections $\implies \ell = c + d + 4 \ ; \ [P_1]$ $\implies \ell = c + d + 4 \mathop{;} \left[P_n \right]$

where $Q := \neg (X \lor C_1 \lor C_2 \lor B)$.

TOT 18-CT TXT 18-GT

23/33

 $keep : \Longleftrightarrow \square(\lceil Q \rceil^1 \, ; \, \lceil B \vee C_1 \rceil^1 \, ; \, \lceil X \rceil^1 \, ; \, \lceil B \vee C_2 \rceil^1 \, ; \, \ell = 4$

 $\implies \ell = 4 \, ; \, \lceil Q \rceil^1 \, ; \, \lceil B \vee C_1 \rceil^1 \, ; \, \lceil X \rceil^1 \, ; \, \lceil B \vee C_2 \rceil^1)$

Construction of F(M)

In the following, we give DC formulae describing the initial configuration,

the general form of configurations,

 $F(\mathcal{M})$ is the conjunction of all these formulae. the transitions between configurations, the handling of the final state.

F(H)= hit , heep , ...

7:40: \$190 6 Roy H $(q:hc;y'\in Royale$


```
q:inc_1:q' (Increment)
```

```
(ii) Leave second counter unchanged
                                                                               (i) Keep rest of first counter  \underbrace{ \left\{ P_i, P_j \right\} }_{ copy( [q]^1 : [B \lor C_1] : [C_1] , \{B, C_1\}) } 
{R, B}
```

26/33

Satisfiability

```
    Following [Chaochen and Hansen, 2004] we can observe that
```

 ${\mathcal M}$ halts if and only if the DC formula $F({\mathcal M}) \wedge \lozenge\lceil q_{fin}
ceil$ is satisfiable.

Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.

(It is semi-decidable.)

```
    Furthermore, by taking the contraposition, we see
```

 ${\cal M}$ diverges if and only if ${\cal M}$ does not halt if and only if $F({\cal M}) \wedge \neg \lozenge \lceil q_{jin} \rceil$ is not satisfiable.

Thus whether a DC formula is not satisfiable is not decidable, not even semi-decidable.

29/33

 Thus it is semi-decidable whether F is valid. Contradiction. • By the soundness and completeness of C, F is a theorem in $\mathcal C$ if and only if F is valid. • By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in $\mathcal{C}.$ Suppose there were such a calculus C. This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):

```
q: dec_1: q', q'' (Decrement)
```

Final State

 $copy(\lceil q_{\mathit{fin}} \rceil^1 : \lceil B \vee C_1 \rceil^1 : \lceil X \rceil : \lceil B \vee C_2 \rceil^1, \{q_{\mathit{fin}}, B, X, C_1, C_2\})$

```
(i) If zero
```

```
\square([q]^1; [B]^1; [X]^1; [B \vee C_2]^1; \ell = 4 \implies \ell = 4; [q']^1; [B]^1; true)
```

(ii) Decrement counter

```
\begin{split} \forall\, d\bullet \,\Box([q]^1\,;([B]\,;[C_1]\wedge\ell=d)\,;\, [B]\,;\, [B\vee C_1]\,;\, [X]^1\,;\, [B\vee C_2]^1\,;\, \ell=4\\ \Longrightarrow\, \ell=4\,;\, [q''^1\,;\, [B]^d\,;\, brue) \end{split}
```

(iii) Keep rest of first counter

```
copy(\lceil q \rceil^1; \lceil B \rceil; \lceil C_1 \rceil; \lceil B_1 \rceil, \{B, C_1\})
```

(iv) Leave second counter unchanged $copy(\lceil q \rceil^1 : \lceil B \vee C_1 \rceil : \lceil X \rceil^1, \{B, C_2\})$

27/33

28/33

Discussion

Validity

• By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

Note: the DC fragment defined by the following grammar is sufficient for the reduction

 $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 \ ; F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1,$

 ${\cal P}$ a state assertion, ${\boldsymbol x}$ a global variable.

Formulae used in the reduction are abbreviations:

 $\ell=x+y+4\iff\ell=x\,;\,\ell=y\,;\,\ell=4$ $\ell \ge 4 \iff \ell = 4$; true $\ell=4 \iff \ell=1;\, \ell=1;\, \ell=1;\, \ell=1$

 \bullet Length 1 is not necessary — we can use $\ell=z$ instead, with fresh z.

• This is RDC augmented by " $\ell=x$ " and " $\forall x$ ", which we denote by RDC + $\ell=x, \forall x$.

32/33

References

[Chaochen and Hansen, 2004] Chaochen, Z. and Hansen, M. R. (2004). Duration Caliculus: A Formal Approach to Rest-Time Systems. Monographs in Theoretical Computer Science. Springer-Verlag, An EMTCS Series.
[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.