

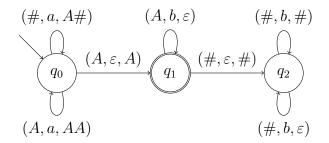
Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling

6. Exercise Sheet for the Tutorial Computer Science Theory

Exercise 1: (optional*) Pushdown automata

*This exercise is not mandatory. It is just an application of exercise 3 on sheet 5.

Consider again the pushdown automaton $\mathcal{A} = (\{a, b\}, \{q_0, q_1, q_2\}, \{\#, A\}, \rightarrow, q_0, \#, \{q_1\})$ accepting with empty stack:



Construct a pushdown automaton \mathcal{B} , accepting with final states, with the same language as \mathcal{A} , i.e., $L_{\varepsilon}(\mathcal{A}) = L(\mathcal{B})$.

Hint: There are two pitfalls if you blindly apply the algorithm.

Exercise 2: Context-free grammars and pushdown automata

Let G = (N, T, P, S) be a context-free grammar with the set of nonterminal symbols $N = \{S, A, B\}$, the set of terminal symbols $T = \{a, b, c\}$, and the following rules

$$P = \{S \to Bc, \\ A \to a, \\ B \to aBb, \\ B \to aA, \\ B \to \varepsilon\}.$$

Construct a pushdown automaton \mathcal{A} such that $L_{\varepsilon}(\mathcal{A}) = L(G)$. Use the algorithm presented in the lecture. Furthermore, provide an accepting sequence of configurations for the word *aaabc*.

Hint: A configuration of a PDA is a tuple of the current state and the current stack content. One possible way to write the sequence down is (starting):

$$(q,S) \xrightarrow{\varepsilon} (q,Aa) \cdots$$

Exercise 3: Regular languages are context-free.

Let $\mathcal{A} = (\Sigma, Q, \rightarrow, q_0, F)$ be an ε -NFA with alphabet $\Sigma = \{a_1, \ldots, a_m\}$, set of states $Q = \{q_0, \ldots, q_n\}$, transition relation \rightarrow , initial state q_0 , and set of final states F. Construct a pushdown automaton \mathcal{B} such that $L(\mathcal{B}) = L(\mathcal{A})$.

Exercise 4: Chomsky Hierarchy

In the previous exercise you have shown that regular languages can be seen as a special case of context-free languages. The same applies to the other two classes in the Chomsky hierarchy: Context-free languages are subsumed by context-sensitive languages, which again are subsumed by Chomsky-0 languages.

We studied regular and context-free languages before. They can be expressed by a Turing machine.

What is the reason why we do not only study Turing machines?

Exercise 5: Turing machines and functions

We use the alphabet $\Sigma = \{|, \#\}$ to encode unary numbers. A natural number *n* is represented by *n* vertical bars. The symbol # is used to separate two numbers. Give a flow chart of a Turing machine τ that computes the following function:

Create two copies of a given unary number. Separate them by #.

Example: $h_{\tau}(||) = ||\#||$

Hint: Use an auxiliary tape symbol.

Exercise 6: Special halting problem

The *special halting problem* is defined as follows:

 $K = \{ bw_{\tau} \in B^* \mid \tau \text{ applied to } bw_{\tau} \text{ halts} \}$

Show that K is undecidable.

Hint: The proof can be found in the lecture script.