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Chapter I – Basic definitions

§2 Logic, sets, relations and functions (pp. 2-4)

1.1.1 Relations (pp. 3-4)

The basic definition of an n-ary relation R is “set of n-tuples”. Typically
n = 2, so R is a binary relation, i.e., R ⊆ X × Y for sets X, Y . There are
many definitions on (binary) relations (see the script).

� hints for exercise 2 on sheet 4�

Chapter II – Finite automata and regular lan-

guages

§1 Finite automata (pp. 9-21)

2.1.1 Deterministic finite automata (continued)

In each state for each symbol in the alphabet there must be exactly one
outgoing transition.

� solution to exercise 1 on sheet 2�
�(I.3)
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2.1.2 Nondeterministic finite automata (NFAs)

Now we lift the above-mentioned limitation. Thus we get two additional
cases when reading a symbol.

case 1 There is more than one outgoing transition in a state. Then the au-
tomaton nondeterministically chooses one transition to take.

case 2 There is no outgoing transition. Then the automaton stops and rejects.

• An alternative view is: the automaton is in several states at the same
time. This can also be read as: The automaton is in a set of states.

A word is accepted by an NFA if and only if there is (at least) some sequence
of transitions leading to a final state.

• An alternative view is: in each step the automaton guesses the next
transition and, magically, it always guesses the right transition.

Even though in real life everything is deterministic, nondeterminism is an
important concept in computer science. We we will see it several times again
in this course.

Every NFA can be converted to a DFA using the powerset construction.

• Hence NFAs do not recognize more languages than DFAs (conversion).

• Every DFA is also an NFA (simply without the nondeterminism).

• Altogether, DFAs and NFAs recognize the same languages.

• However, NFAs may be smaller (NFA: n states⇒DFA: up to 2n states).

� solutions to exercises 2–3 on sheet 2�

2.1.3 ε-transitions

Once again we expand our automaton model and allow spontaneous transi-
tions labeled by ε. The resulting ε-NFA can jump through ε-chains at any
time. Every ε-NFA can be converted to an NFA:

(a) For every state q ∈ Q and every symbol a ∈ Σ find all states q′ which
can be reached from q with a. Add transitions q

a→ q′.

(b) Do one of the following alternative steps:

2



(i) Make all states q final which can reach a final state via an ε-chain.

(ii) Make q0 final if it can reach a final state via an ε-chain.

(c) Remove all ε-transitions.

What class of languages is accepted by ε-NFAs?

• NFAs do not recognize more languages than DFAs (conversion).

• Every NFA is also an ε-NFA (simply without the ε-transitions).

• Altogether, ε-NFAs and NFAs recognize the same languages.
�(1)

� solution to exercise 4 on sheet 2�

� solution to exercise 1 on sheet 3�

§2 Closure properties (pp. 21-23)

Let L1, L2 be finitely acceptable languages. Then there are finite automata
A1,A2 with distinct states accepting them. This class is closed under

• union (L1 ∪ L2): Construct the ε-NFA with a new initial state and
ε-transitions to the two old initial states.

• complement (L1 = Σ∗ \ L1): Final states become non-final states and
vice versa. Note that this only works for DFAs.

• intersection (L1 ∩ L2): Use the complement and union constructions

together with the equivalence L1 ∩ L2 = L1 ∪ L2.

• difference (L1 \ L2): Use the equivalence L1 \ L2 = L1 ∩ L2.

• concatenation (L1 · L2): Make every final state q of A1 non-final and
add ε-transitions from q to the initial state of A2.

• iteration (L∗1): Add a new initial and final state qinit and an ε-transition
from qinit to the old initial state of A1. Furthermore, make every final
state q of A1 non-final and add ε-transitions from q to qinit .

� solution to exercise 5 on sheet 2�
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§3 Regular expressions (pp. 24-26)

Syntax:

• ∅ and ε are regular expressions over Σ.

• a is a regular expression over Σ for every a ∈ Σ.

• If re, re1, re2 are regular expressions over Σ, then (re1+re2), (re1 ·re2),
and re∗ are also regular expressions over Σ.

Semantics:

• L(∅) = ∅

• L(ε) = {ε}

• L(a) = {a} for a ∈ Σ

• L((re1 + re2)) = L(re1) ∪ L(re2)

• L((re1 · re2)) = L(re1) · L(re2)

• L(re∗) = L(re)∗

� solution to exercise 2 on sheet 3�

§4 Structural properties of regular languages (pp. 26-31)

2.4.1 Pumping lemma for regular languages

We have seen: if a language L is regular, then there is a DFA A accepting it.

• L is finite if and only if there are no loops in A (exception: sink state).

• Conversely, L is infinite if and only if there is at least one loop in A.

• Loops are unbounded. Hence we can take any number of iterations.

• Thus, if A recognizes a word z ∈ Σ∗ for which it goes once through a
loop, it must also recognize a word z′ with different loop iterations.

q0 qj qm
u

v

w
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The pumping lemma for regular languages is then:

For every regular language L ⊆ Σ∗ there exists a number n ∈ N,
so that for all words z ∈ L with |z| ≥ n there is a decomposition
z = uvw with v 6= ε and |uv| ≤ n and for all i ∈ N it holds that
uviw ∈ L.

Usually the pumping lemma is used to show that a language L is not regular.
For this proof by contradiction it must be negated. If the following holds,
then L is not regular.

For all numbers n ∈ N there exists a word z ∈ L with |z| ≥ n and
for all decompositions z = uvw with v 6= ε and |uv| ≤ n there
exists an i ∈ N such that uviw /∈ L.

� solution to exercise 3 on sheet 3�

� hints for exercise 1 on sheet 4�

2.4.2 Nerode relation

We skip this part in the interest of time.

Summary: For every regular language there is a DFA with minimal number
of states. It is unique up to isomorphism (renaming of states).

§5 Decidability questions (pp. 32-34)

We skip this part in the interest of time.

Summary: All interesting problems are decidable for regular languages:
acceptance, emptiness, finiteness, equivalence, inclusion, intersection

Chapter III – Context-free languages and push-

down automata (pp. 37-69)

Nested bracket structures occur often in computer science. Respective lan-
guages are not regular, so we need another class – the context-free languages.
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§1 Context-free grammars (pp. 38-43)

A context-free grammar is a 4-tuple G = (N, T, P, S) where

• N is an alphabet of non-terminal symbols (capital letters),

• T is an alphabet of terminal symbols (small letters) with N ∩ T = ∅,

• S ∈ N is the start symbol, and

• P ⊆ N × (N ∪ T )∗ is a finite set of productions or rules.
�(2)

We define the derivation relation `:

• uAx ` uvx when there is a rule A→ v.

• `n denotes the application of ` n times .

• `∗ denotes the application of ` arbitrarily often.

• The language generated by G is L(G) = {w ∈ T ∗ | S `∗ w}.

• We call language L context-free if there is a grammar G with L = L(G).

We have nondeterminism in two places:

(a) the choice of the right-hand side of a production

(b) the choice of the next non-terminal to replace

The latter choice can be eliminated in two ways:

(a) Always replace the leftmost non-terminal (called leftmost derivation).

(b) Consider a derivation tree.

If there is only one leftmost derivation or one derivation tree for each word
w ∈ L(G), we call G unambiguous, and ambiguous otherwise.
Note: It is undecidable whether a context-free grammar is ambiguous.

� hints for exercises 4–5 on sheet 4�
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