
Prof. Dr. Andreas Podelski
Matthias Heizmann
Christian Schilling

June 4th, 2014

3. Lecture
Computer Science Theory

Chapter III – Context-free languages and push-

down automata (pp. 37-69)

§2 Pumping lemma (pp. 44-47)

We skip this part in the interest of time.

Summary: There is also a pumping lemma for context-free languages. Again,
it can be used to prove that a language is not context-free. But, as in the
regular language case, there are languages which are not context-free, but
for which the pumping lemma is not strong enough to show that.

§3 Pushdown automata (pp. 48-57)

We want to have an automaton model for context-free languages, like we
had the finite automata for regular languages. We have already seen that
context-free grammars can generate languages such as L = {anbn | n ∈ N}.
An automaton would need to store the number of a’s read so far. Hence we
have to add some memory to our ε-NFA model.

For this we use a stack (of unlimited size) on which the automaton can write
symbols from a new stack alphabet. The automaton can pop (erase) the top-
most symbol and use it for choosing the next transition. Also, it can push
(add) an arbitrary string to the stack. In each step exactly one pop and one
push operation is applied. We call this model a pushdown automaton (PDA).

Unlike finite automata, deterministic PDAs (DPDAs) are weaker than non-
deterministic PDAs, i.e., there are context-free languages for which there is
no DPDA accepting it.

1



Formally, a (nondeterministic) push-down automaton (PDA) is a 7-tuple

A = (Σ, Q,Γ,→, q0, Z0, F )

with the following properties:

• Σ is the input alphabet,

• Q is a finite set of states,

• Γ is the stack alphabet,

• →⊆ Q× Γ× (Σ ∪ {ε})×Q× Γ∗ is the transition relation,

• q0 ∈ Q is the initial/start state,

• Z0 ∈ Γ is the initial/start symbol of the stack,

• F ⊆ Q is the set of final states.

Transition are of the form (q, Z, α, q′, γ). We also write (q, Z)
α→ (q′, γ).

A PDA reads a word w as follows. Initially, the stack contains only Z0 and
the current state is q0. Then in each step the PDA pops the top-most symbol
from the stack. It then either reads the next symbol of w or it reads noth-
ing (spontaneous ε-transition). In both cases, depending on the transition
relation, it goes to a new state and pushes some new string (possibly ε).

Note: When the stack is empty after a step (i.e., the last symbol was popped
and no symbol was pushed), the PDA stops working. �(1)

1.2.1 Acceptance

Since we have a stack now, we can define two different notions of acceptance:

(a) We write L(A) for the language accepted with final states (as usual).

(b) We write Lε(A) for the language accepted with the empty stack.

It turns out that these acceptance conditions are equally powerful.

3.5 Theorem (acceptance)

(a) For every PDA A we can construct a PDA B with L(A) = Lε(B).

(b) For every PDA A we can construct a PDA B with Lε(A) = L(B).

2


