%k ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

Prof. Dr. Andreas Podelski July 22nd-23rd, 2014
Matthias Heizmann
Christian Schilling

8. Lecture
Computer Science Theory

Chapter VI — Complexity (pp. 123-138)

§1 Computational complexity (pp. 123-126)

Before, we always abstracted away from runtime and memory usage. Now
we consider these two measurements to compare problems (with focus on
runtime).

There are two important bounds for algorithmic problems:

e upper bound, meaning that this problem is solvable within that bound
proven by giving an algorithm which solves the problem in this bound

e lower bound, meaning that there are instances of this problem which
cannot be solved more efficiently

no general proof method

Our model for reasoning: Turing machines. We can use k-tape TMs to get
more realistic results (a TM has no random access, opposite to a computer).

Definition 1.1 Let f: N — N be a function and 7 be a non-deterministic
TM with several tapes and input alphabet .

e 7 has the time complezity f(n) if for every w € ¥* of length n it holds:
7 applied to the input w terminates for every possible computation in
at most f(n) steps.

(ii) 7 has the space complezity f(n) if for every w € ¥* of length n holds:
7 applied to the input w uses for every possible computation on every
tape at most f(n) fields.

Definition 1.2 Let f: N — N.

DTIME(f(n)) = {L |there exists a deterministic TM with several tapes
which has time complexity f(n) and accepts L}
NTIME(f(n)) = {L | there is a non-deterministic TM with several tapes
which has time complexity f(n) and accepts L}
DSPACE(f(n)) = {L | there exists a deterministic TM with several tapes
which has space complexity f(n), and accepts L}
NSPACE(f(n)) = {L | there is a non-deterministic TM with several tapes
which has space complexity f(n) and accepts L}

Because a TM can visit at most one new field on its tapes in each computa-
tional step, we have:

DSPACE(f(n))
DTIME(f(n))

N 1N
N 1N

NSPACE(f(n))
NTIME(f(n))

Definition 1.3 Let g : N — N. We define:
O(g(n)) ={f:N—=N|3Ing,keN:VYn>ng: f(n) <k-g(n)}

O(g(n)) is the class of all functions f which are bounded by a constant
multiplied by ¢ for sufficiently large values of n.

§2 The classes P and NP (pp. 127-132)
Definition 2.1

P = U DTIME(p(n))
p polynomial in n

NP = U NTIME(p(n))
p polynomial in n

PSPACE = U DSPACE(p(n))
p polynomial in n

NPSPACE = U NSPACE(p(n))

p polynomial in n

Theorem 2.2 P C NPC PSPACE = NPSPACE C EXPTIME

Open problem in computer science: Are the inclusions strict or does the
equality hold? We only know P C EXPTIME.

all problems resp. languages

computable resp. decidable
EXPTIME

PSPACE
NP

P

P: Construct the right solution deterministically and in polynomial time.

NP: Guess a solution proposal non-deterministically and then verify / check
deterministically and in polynomial time whether this proposal is right.

Examples of problems from the class NP

(a) Problem of Hamiltonian path
Given: A finite graph with n vertices.
Question: Does the graph contain a Hamiltonian path, i.e., a path
which visits each vertex exactly once?

(b) Traveling salesman problem
Given: A finite, complete graph with n vertices and associated with
every edge a natural number (the length/weight/cost), as well as a
number k£ € N.
Question: Is there a tour of length < k, i.e., is there a cycle in the
graph with length < k£ which visits each vertex at least once?

(3) Satisfiability problem for Boolean expressions (shortly SAT)
Given: A Boolean expression B, i.e., an expression which consists only
of variables z1, xs, . . ., ¥, connected by operators = (not), A (and) and
V (or), as well as by brackets.

Question: Is B satisfiable, i.e., is there an assignment of 0 and 1 to the
Boolean variables x1, xs,...,x, in B such that B evaluates to 17

While thinking about polynomial solutions for these problems, a subclass of
NP was found, namely the class NPC of the so called NP-complete problems.
These are the hardest problems in NP and if one of them is found to be

polynomial, we immediately have a procedure to solve all problems in NP
polynomially. This is why it is very unlikely that P = NP.

Today more than 1000 problems are known to be in NPC. Many of them are
practically relevant.

Definition 2.3 Let L; C X7 and Ly C X3 be languages. Then L; is called
polynomially-time reducible to Lo, shortly

Ll Sp LQv

if there is a function f : ¥7 — X5 which is total and computable with a
polynomial time complexity, such that for all w € X7 it holds that

we Ly & f(w) € L.

We also say: L; <, Ly using f.

Definition 2.4 A language L is called NP-hard if for all L € NP it holds
that L <, Lo.
A language Ly is called NP-complete if Ly € NP and Lg is NP-hard.

Note that having only one of these properties is not helpful:
e If Ly € NP, then it might also be that Ly € P (assuming P # NP).

e If Ly is NP-hard, then it might be of exponential or worse complexity.

Lemma 2.5 Let L; <, Ly. Then it holds that:
(a) If Ly € P holds, then L; € P holds as well.
(b) If Ly € NP holds, then L; € NP holds as well.

(c) If Ly is NP-complete and Ly € NP holds, then L, is also NP-complete.

Corollary 2.6 Let L be an NP-complete language. Then it holds that
Le P& P=NP.

Example reduction We reduce the Hamiltonian path problem (HPP) to
the traveling salesman problem (TSP). We show this by an intermediate
reduction for the Hamiltonian cycle/circuit problem (HCP). HCP is almost
the same as HPP, only that we want a cycle now (i.e., the path should start
and end at the same vertex, i.e., one vertex is visited twice). Obviously, HCP
is also an NP problem (why?).

(a)

Show HPP <, HCP,

Construction:

input: finite graph G = (V| F)
output: finite graph G’ = (V' E’) with
o V' =V U{vp},uo ¢V, so we have the old vertices plus one extra
vertex vy
o F'=FEU{(v,1) | v €V}, sowe have the old edges plus an edge

from every old vertex to vg.

This construction is total (recognizing a proper input is simple) and
computable in polynomial time (we need to add one vertex and |V|

edges, possible in O(|V| + |E|)).
We need to show that G € HPP < (G', k) € HCP.

“=" If there is a Hamiltonian path in G, say, from v; to vq, then we
can close the cycle by taking the edge (vq, vg) to vy, followed by taking
the edge (vy,v9) to vy in G.

“<” If there is a Hamiltonian cycle G’, then every vertex is visited ex-
actly once, especially vg. We find a Hamiltonian path in G by removing
those two transitions from and to vy on the cycle.
Show HCP <, TSP.
Construction:
input: finite graph G = (V, E)
output: tuple (G’, k), where
e ' = (V,E') is a complete graph with E’ has all edges from F
with weight 1 and all possible edges not in £ with weight 2

e k= |V] is a natural number equal to the number of vertices.

This construction is total (recognizing a proper input is simple) and
computable in polynomial time (there are O(|V'|?) possible edges).

We need to show that G € HCP < (G', k) € TSP.

“=7" 1If there is a Hamiltonian cycle in GG, then there is a tour in G’ of
weight k, namely the same cycle.

“<” 1If there is a tour in G’ of weight k, it means that every edge has
weight 1. This means these edges were already present in GG, so we have
a Hamiltonian cycle in GG, namely the same as the tour.

(c) We have shown HPP <, HCP <, TSP. Because HPP is known to be
NP-complete and thus NP-hard, we have shown that HCP and TSP
are NP-hard. Since HCP and TSP are NP problems, they are even
NP-complete.

Some NP-complete problems can be slightly modified and then polynomially
solved. For instance, the Eulerian path problem asks for a path through a
graph which visits each edge exactly once (compare to the Hamiltonian path
problem). This is polynomially solvable (linear in the size of the graph).

A typical way to tackle NP-complete problems in practice is finding good
heuristics. Remember that lower bounds only have to hold for some in-
stances, so many instances might be simple to solve.

There exist important NP-complete problems for which very good approx-
imation algorithms (e.g., the result is always at most 10% away from the
optimum) or probability algorithms (e.g., the result is correct in 90% of all
cases) are known.

83 The satisfiability problem for Boolean expressions
(pp. 133-138)
We skip this part in the interest of time.

Summary: The “mother of all NP-complete problems”, SAT, is proven to be
NP-complete. The proof is not very hard, but very technical.

