
Prof. Dr. Andreas Podelski
Matthias Heizmann
Christian Schilling

July 22nd-23rd, 2014

8. Lecture
Computer Science Theory

Chapter VI – Complexity (pp. 123-138)

§1 Computational complexity (pp. 123-126)

Before, we always abstracted away from runtime and memory usage. Now
we consider these two measurements to compare problems (with focus on
runtime).
There are two important bounds for algorithmic problems:

• upper bound, meaning that this problem is solvable within that bound

proven by giving an algorithm which solves the problem in this bound

• lower bound, meaning that there are instances of this problem which
cannot be solved more efficiently

no general proof method

Our model for reasoning: Turing machines. We can use k-tape TMs to get
more realistic results (a TM has no random access, opposite to a computer).

Definition 1.1 Let f : N→ N be a function and τ be a non-deterministic
TM with several tapes and input alphabet Σ.

• τ has the time complexity f(n) if for every w ∈ Σ∗ of length n it holds:
τ applied to the input w terminates for every possible computation in
at most f(n) steps.

(ii) τ has the space complexity f(n) if for every w ∈ Σ∗ of length n holds:
τ applied to the input w uses for every possible computation on every
tape at most f(n) fields.

1

Definition 1.2 Let f : N→ N.

DTIME(f(n)) = {L | there exists a deterministic TM with several tapes
which has time complexity f(n) and accepts L}

NTIME(f(n)) = {L | there is a non-deterministic TM with several tapes
which has time complexity f(n) and accepts L}

DSPACE(f(n)) = {L | there exists a deterministic TM with several tapes
which has space complexity f(n), and accepts L}

NSPACE(f(n)) = {L | there is a non-deterministic TM with several tapes
which has space complexity f(n) and accepts L}

Because a TM can visit at most one new field on its tapes in each computa-
tional step, we have:

⊆ DSPACE(f(n)) ⊆
DTIME(f(n)) NSPACE(f(n))

⊆
NTIME(f(n)) ⊆

Definition 1.3 Let g : N→ N. We define:

O(g(n)) = {f : N→ N | ∃n0, k ∈ N : ∀n ≥ n0 : f(n) ≤ k · g(n)}

O(g(n)) is the class of all functions f which are bounded by a constant
multiplied by g for sufficiently large values of n.

§2 The classes P and NP (pp. 127-132)

Definition 2.1

P =
⋃

p polynomial in n

DTIME(p(n))

NP =
⋃

p polynomial in n

NTIME(p(n))

PSPACE =
⋃

p polynomial in n

DSPACE(p(n))

NPSPACE =
⋃

p polynomial in n

NSPACE(p(n))

Theorem 2.2 P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

Open problem in computer science: Are the inclusions strict or does the
equality hold? We only know P (EXPTIME.

2

all problems resp. languages

computable resp. decidable

EXPTIME

PSPACE

NP

P
�� �
NPC

P: Construct the right solution deterministically and in polynomial time.

NP: Guess a solution proposal non-deterministically and then verify / check
deterministically and in polynomial time whether this proposal is right.

Examples of problems from the class NP

(a) Problem of Hamiltonian path
Given: A finite graph with n vertices.
Question: Does the graph contain a Hamiltonian path, i.e., a path
which visits each vertex exactly once?

(b) Traveling salesman problem
Given: A finite, complete graph with n vertices and associated with
every edge a natural number (the length/weight/cost), as well as a
number k ∈ N.
Question: Is there a tour of length ≤ k, i.e., is there a cycle in the
graph with length ≤ k which visits each vertex at least once?

(3) Satisfiability problem for Boolean expressions (shortly SAT)
Given: A Boolean expression B, i.e., an expression which consists only
of variables x1, x2, . . . , xn connected by operators ¬ (not), ∧ (and) and
∨ (or), as well as by brackets.
Question: Is B satisfiable, i.e., is there an assignment of 0 and 1 to the
Boolean variables x1, x2, . . . , xn in B such that B evaluates to 1?

While thinking about polynomial solutions for these problems, a subclass of
NP was found, namely the class NPC of the so called NP-complete problems.
These are the hardest problems in NP and if one of them is found to be

3

polynomial, we immediately have a procedure to solve all problems in NP
polynomially. This is why it is very unlikely that P = NP.
Today more than 1000 problems are known to be in NPC. Many of them are
practically relevant.

Definition 2.3 Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages. Then L1 is called
polynomially-time reducible to L2, shortly

L1 ≤p L2,

if there is a function f : Σ∗1 → Σ∗2 which is total and computable with a
polynomial time complexity, such that for all w ∈ Σ∗1 it holds that

w ∈ L1 ⇔ f(w) ∈ L2.

We also say: L1 ≤p L2 using f .

Definition 2.4 A language L0 is called NP-hard if for all L ∈ NP it holds
that L ≤p L0.
A language L0 is called NP-complete if L0 ∈ NP and L0 is NP-hard.

Note that having only one of these properties is not helpful:

• If L0 ∈ NP, then it might also be that L0 ∈ P (assuming P 6= NP).

• If L0 is NP-hard, then it might be of exponential or worse complexity.

Lemma 2.5 Let L1 ≤p L2. Then it holds that:

(a) If L2 ∈ P holds, then L1 ∈ P holds as well.

(b) If L2 ∈ NP holds, then L1 ∈ NP holds as well.

(c) If L1 is NP-complete and L2 ∈ NP holds, then L2 is also NP-complete.

Corollary 2.6 Let L be an NP-complete language. Then it holds that
L ∈ P ⇔ P = NP.

4

Example reduction We reduce the Hamiltonian path problem (HPP) to
the traveling salesman problem (TSP). We show this by an intermediate
reduction for the Hamiltonian cycle/circuit problem (HCP). HCP is almost
the same as HPP, only that we want a cycle now (i.e., the path should start
and end at the same vertex, i.e., one vertex is visited twice). Obviously, HCP
is also an NP problem (why?).

(a) Show HPP ≤p HCP.

Construction:

input: finite graph G = (V,E)

output: finite graph G′ = (V ′, E ′) with

• V ′ = V ∪ {v0}, v0 /∈ V , so we have the old vertices plus one extra
vertex v0

• E ′ = E ∪ {(v, v0) | v ∈ V }, so we have the old edges plus an edge
from every old vertex to v0.

This construction is total (recognizing a proper input is simple) and
computable in polynomial time (we need to add one vertex and |V |
edges, possible in O(|V |+ |E|)).
We need to show that G ∈ HPP⇔ (G′, k) ∈ HCP.

“⇒” If there is a Hamiltonian path in G, say, from v1 to v2, then we
can close the cycle by taking the edge (v2, v0) to v0, followed by taking
the edge (v1, v0) to v1 in G′.

“⇐” If there is a Hamiltonian cycle G′, then every vertex is visited ex-
actly once, especially v0. We find a Hamiltonian path in G by removing
those two transitions from and to v0 on the cycle.

(b) Show HCP ≤p TSP.

Construction:

input: finite graph G = (V,E)

output: tuple (G′, k), where

• G′ = (V,E ′) is a complete graph with E ′ has all edges from E
with weight 1 and all possible edges not in E with weight 2

• k = |V | is a natural number equal to the number of vertices.

5

This construction is total (recognizing a proper input is simple) and
computable in polynomial time (there are O(|V |2) possible edges).

We need to show that G ∈ HCP⇔ (G′, k) ∈ TSP.

“⇒” If there is a Hamiltonian cycle in G, then there is a tour in G′ of
weight k, namely the same cycle.

“⇐” If there is a tour in G′ of weight k, it means that every edge has
weight 1. This means these edges were already present in G, so we have
a Hamiltonian cycle in G, namely the same as the tour.

(c) We have shown HPP ≤p HCP ≤p TSP. Because HPP is known to be
NP-complete and thus NP-hard, we have shown that HCP and TSP
are NP-hard. Since HCP and TSP are NP problems, they are even
NP-complete.

Some NP-complete problems can be slightly modified and then polynomially
solved. For instance, the Eulerian path problem asks for a path through a
graph which visits each edge exactly once (compare to the Hamiltonian path
problem). This is polynomially solvable (linear in the size of the graph).

A typical way to tackle NP-complete problems in practice is finding good
heuristics. Remember that lower bounds only have to hold for some in-
stances, so many instances might be simple to solve.
There exist important NP-complete problems for which very good approx-
imation algorithms (e.g., the result is always at most 10% away from the
optimum) or probability algorithms (e.g., the result is correct in 90% of all
cases) are known.

§3 The satisfiability problem for Boolean expressions
(pp. 133-138)

We skip this part in the interest of time.

Summary: The “mother of all NP-complete problems”, SAT, is proven to be
NP-complete. The proof is not very hard, but very technical.

6

