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4. Exercise Sheet for the Tutorial
Computer Science Theory

Announcement: Starting with this exercise sheet, we change the course interval from
one-week to two-week. Accordingly, exercise sheets are designed for two weeks of work.

Exercise 1: Limits of the Pumping Lemma
Consider the following language over the alphabet Σ = {a, b, c}:

L = {aibjck | i = 0 or k < j, for i, j, k ∈ N}

Apply the pumping lemma. Does it work? What does this mean?

Exercise 2: ≡A Equivalence
Let A = (Σ, Q,→, q0, F ) be a nondeterministic finite automaton. For words u, v ∈ Σ∗ we
define the relation ≡A as

u ≡A v iff there is q ∈ Q such that q0
u→ q and q0

v→ q.

Show that ≡A is not an equivalence relation for nondeterministic finite automata.

Hint : You should give a counterexample: an NFA A and two words u, v ∈ Σ∗ such that
at least one of the properties of an equivalence relation is not satisfied for ≡A.



Exercise 3: Minimal Automaton
Consider the following algorithm:

Minimization Algorithm

Input: DFA A = (Σ, Q, δ, q0, F ).

Output: Minimal DFA recognizing L(A).

1. Eliminate all unreachable states.

2. Maintain a table such that there is a cell for every set of states {q, q′} with
q 6= q′ (ignoring the order).

3. Mark every set of states {q, q′} with q ∈ F and q′ /∈ F .

4. For every unmarked set of states {q, q′} and every symbol a ∈ Σ, consider
the set of states {δ(q, a), δ(q′, a)}. If {δ(q, a), δ(q′, a)} is marked, then also
mark {q, q′}.

5. Repeat step 4 until there are no more changes in the table.

6. Merge all states for which the corresponding set is not marked.

Apply this algorithm to the following DFA.
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Provide the minimal automaton and the final marking table.



Exercise 4: Context-free Grammars
Consider the context-free grammar G = (N, T, P, S) with N = {S}, T = {a, b} and

P = {S → ε,
S → aSbS,
S → bSaS}.

(a) Provide a derivation for the word abbbaa.

(b) Which language L is generated byG? Provide a simple formulation of L and describe
why L(G) ⊆ L holds (we ignore L ⊆ L(G)).

(c) Is G unambiguous? Justify your answer.

Exercise 5: Logical Formulae as Context-free Grammar
Consider the finite set X = {x1, . . . , xn} of variables. In propositional logic, a formula is
defined inductively as follows:

• Every variable x ∈ X is a formula.

• If φ is a formula, then ¬φ is a formula.

• If φ, ψ are formulae, then (φ ∧ ψ) and (φ ∨ ψ) are formulae.

(a) Provide a context-free grammar that generates the language of all formulae with
variables from X. Use the following terminal symbols:

T = X ∪ {¬, ), (,∧,∨}

(b) Exemplarily give two words w1, w2 ∈ T ∗ generated by your grammar (which should
be formulae) and two words w3, w4 ∈ T ∗ not generated by your grammar (which
should not be formulae).


