Contents & Goals

Last Lecture:
- Semantical Correctness Proof

This Lecture:
- **Educational Objectives:** Capabilities for following tasks/questions.
 - Facts: (un)decidability properties of DC in discrete/continuous time.
 - What’s the idea of the considered (un)decidability proofs?
- **Content:**
 - RDC in discrete time
 - Satisfiability and realisability from 0 is decidable for RDC in discrete time
 - Undecidable problems of DC in continuous time
RDC in Discrete Time Cont’d
Restricted DC (RDC)

\[F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \]

where \(P \) is a state assertion, but with **boolean** observables **only**.

Note:

- No global variables, thus don’t need \(\forall \).

-
An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

$$X_\mathcal{I} : \text{Time} \rightarrow \mathcal{D}(X)$$

with

- $\text{Time} = \mathbb{R}_0^+$,
- all discontinuities are in \mathbb{N}_0.

Discrete Time Interpretations

- An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $$X_\mathcal{I} : \text{Time} \rightarrow \mathcal{D}(X)$$

 with

 - $\text{Time} = \mathbb{R}_0^+$,
 - all discontinuities are in \mathbb{N}_0.

Discrete Time Interpretations

- An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $$X_\mathcal{I} : \text{Time} \rightarrow \mathcal{D}(X)$$

 with

 - **Time** $= \mathbb{R}_0^+$,
 - all discontinuities are in \mathbb{N}_0.

- An interval $[b, e] \subset \text{Intv}$ is called **discrete** if and only if $b, e \in \mathbb{N}_0$.
Discrete Time Interpretations

- An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $$X_{\mathcal{I}} : \text{Time} \rightarrow \mathcal{D}(X)$$

 with
 - $\text{Time} = \mathbb{R}_0^+$,
 - all discontinuities are in \mathbb{N}_0.

- An interval $[b, e] \subset \text{Intv}$ is called **discrete** if and only if $b, e \in \mathbb{N}_0$.

- We say (for a discrete time interpretation \mathcal{I} and a discrete interval $[b, e]$)

 $$\mathcal{I}, [b, e] \models F_1 \; ; \; F_2$$

 if and only if there exists $m \in [b, e] \cap \mathbb{N}_0$ such that

 $$\mathcal{I}, [b, m] \models F_1 \quad \text{and} \quad \mathcal{I}, [m, e] \models F_2$$
Differences between Continuous and Discrete Time

- Let P be a state assertion.

<table>
<thead>
<tr>
<th></th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\models^? (\lceil P \rceil ; \lceil P \rceil)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\implies \lceil P \rceil$</td>
<td>$\lceil P \rceil$</td>
<td></td>
</tr>
</tbody>
</table>

$\models^? [P] \implies ([P] ; [P])$
Differences between Continuous and Discrete Time

- Let P be a state assertion.

<table>
<thead>
<tr>
<th>$\models^? ([P] ; [P])$</th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\implies [P]$</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\models^? [P] \implies ([P] ; [P])$</th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✔</td>
<td>✘</td>
</tr>
</tbody>
</table>

- In particular: $\ell = 1 \iff ([1] \land \neg([1] ; [1]))$ (in discrete time).
Expressiveness of RDC

- $\ell = 1 \iff [1] \land \neg([1] ; [1])$
- $\ell = 0 \iff \neg[1]$
- $\text{true} \iff \ell = 0 \lor \neg(\ell = 0)$
- $\int P = 0 \iff \neg P \lor \ell = 0$
- $\int P = 1 \iff (\int P = 0) ; ([P] \land \ell = 1) ; (\int P = 0)$
- $\int P = k + 1 \iff (\int P = k) ; (\int P = 1)$
- $\int P \geq k \iff (\int P = k) ; \text{true}$
- $\int P > k \iff \int P \geq k + 1$
- $\int P \leq k \iff \neg(\int P > k)$
- $\int P < k \iff \int P \leq k - 1$

where $k \in \mathbb{N}$.
Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
Sketch: Proof of Theorem 3.6

• give a procedure to construct, given a formula \(F \), a **regular** language \(\mathcal{L}(F) \) such that

\[\mathcal{I}, [0, n] \models F \text{ if and only if } w \in \mathcal{L}(F) \]

where word \(w \) describes \(\mathcal{I} \) on \([0, n]\)

(suitability of the procedure: **Lemma 3.4**)

• then \(F \) is satisfiable in discrete time if and only if \(\mathcal{L}(F) \) is not empty

(\textbf{Lemma 3.5})

• Theorem 3.6 follows because

 • \(\mathcal{L}(F) \) can **effectively** be constructed,
 • the emptyness problem is **decidable** for regular languages.
Construction of $L(F)$

- **Idea:**
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation on an interval of length 1,
 - a word of length n describes an interpretation on interval $[0, n]$.
Construction of $\mathcal{L}(F)$

- **Idea:**
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation on an interval of length 1,
 - a word of length n describes an interpretation on interval $[0,n]$.

- **Example:** Assume F contains exactly state variables X, Y, Z, then

 $$\Sigma(F) = \{X \land Y \land Z, X \land Y \land \neg Z, X \land \neg Y \land Z, X \land \neg Y \land \neg Z, \neg X \land Y \land Z, \neg X \land Y \land \neg Z, \neg X \land \neg Y \land Z, \neg X \land \neg Y \land \neg Z\}.$$
Construction of $\mathcal{L}(F)$ more Formally

Definition 3.2. A word $w = a_1 \ldots a_n \in \Sigma(F)^*$ with $n \geq 0$ describes a discrete interpretation \mathcal{I} on $[0, n]$ if and only if

$$\forall j \in \{1, \ldots, n\} \ \forall t \in]j - 1, j[: \mathcal{I}[a_j](t) = 1.$$

For $n = 0$ we put $w = \varepsilon$.

- Each state assertion P can be transformed into an equivalent **disjunctive normal form** $\bigvee_{i=1}^{m} a_i$ with $a_i \in \Sigma(F)$.
- Set $\text{DNF}(P) := \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$.
- Define $\mathcal{L}(F)$ inductively:

 $$\mathcal{L}([P]) = \text{DNF}(P)^+,\,$$
 $$\mathcal{L}(\neg F_1) = \Sigma(F)^* \setminus \mathcal{L}(F_1),$$
 $$\mathcal{L}(F_1 \lor F_2) = \mathcal{L}(F_1) \cup \mathcal{L}(F_2),$$
 $$\mathcal{L}(F_1 ; F_2) = \mathcal{L}(F_1) \cdot \mathcal{L}(F_2).$$
Lemma 3.4. For all RDC formulae F, discrete interpretations \mathcal{I}, $n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe \mathcal{I} on $[0, n]$,

\[\mathcal{I}, [0, n] \models F \text{ if and only if } w \in \mathcal{L}(F). \]
Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

- \(\text{kern}(L) \) contains all words of \(L \) whose prefixes are again in \(L \).
- If \(L \) is regular, then \(\text{kern}(L) \) is also regular.
- \(\text{kern}(\mathcal{L}(F)) \) can effectively be constructed.
- We have

Lemma 3.8. For all RDC formulae \(F \), \(F \) is realisable from 0 in discrete time if and only if \(\text{kern}(\mathcal{L}(F)) \) is infinite.

- Infinity of regular languages is decidable.
(Variants of) RDC in Continuous Time
Recall: Restricted DC (RDC)

\[F ::= [P] | \neg F_1 | F_1 \lor F_2 | F_1 ; F_2 \]

where \(P \) is a state assertion, but with **boolean** observables only.

From now on: “RDC + \(\ell = x, \forall x \)”

\[F ::= [P] | \neg F_1 | F_1 \lor F_2 | F_1 ; F_2 | \ell = 1 | \ell = x | \forall x \bullet F_1 \]
Theorem 3.10.
The realisability from 0 problem for DC with **continuous time** is undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.
Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

- Given a two-counter machine \mathcal{M} with final state q_{fin},
- construct a DC formula $F(\mathcal{M}) := encoding(\mathcal{M})$
- such that

\[\mathcal{M} \text{ diverges if and only if } \text{the DC formula} \]

\[F(\mathcal{M}) \land \neg \Diamond[q_{fin}] \]

is realisable from 0.

- If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn’t).
Recall: Two-counter machines

A two-counter machine is a structure

\[\mathcal{M} = (Q, q_0, q_{\text{fin}}, \text{Prog}) \]

where

- \(Q \) is a finite set of states,
- comprising the initial state \(q_0 \) and the final state \(q_{\text{fin}} \)
- \(\text{Prog} \) is the machine program, i.e. a finite set of commands of the form

 \[q : \text{inc}_i : q' \quad \text{and} \quad q : \text{dec}_i : q', q'' , \quad i \in \{1, 2\}. \]

- We assume deterministic 2CM: for each \(q \in Q \), at most one command starts in \(q \), and \(q_{\text{fin}} \) is the only state where no command starts.
a configuration of \mathcal{M} is a triple $K = (q, n_1, n_2) \in \mathbb{Q} \times \mathbb{N}_0 \times \mathbb{N}_0$.
• a **configuration** of \mathcal{M} is a triple $K = (q, n_1, n_2) \in Q \times \mathbb{N}_0 \times \mathbb{N}_0$.

• The **transition relation** “\vdash” on configurations is defined as follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: $K \vdash K'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : inc_1 : q'$</td>
<td></td>
</tr>
<tr>
<td>$q : dec_1 : q', q''$</td>
<td></td>
</tr>
<tr>
<td>$q : inc_2 : q'$</td>
<td></td>
</tr>
<tr>
<td>$q : dec_2 : q', q''$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: $K \vdash K'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : inc_1 : q'$</td>
<td></td>
</tr>
<tr>
<td>$q : dec_1 : q', q''$</td>
<td></td>
</tr>
<tr>
<td>$q : inc_2 : q'$</td>
<td></td>
</tr>
<tr>
<td>$q : dec_2 : q', q''$</td>
<td></td>
</tr>
</tbody>
</table>

- $(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$
- $(q, 0, n_2) \vdash (q', 0, n_2)$
- $(q, n_1 + 1, n_2) \vdash (q'', n_1, n_2)$
- $(q, n_1, n_2 + 1) \vdash (q', n_1, 0)$
- $(q, n_1 + 1) \vdash (q'', n_1, n_2)$
a **configuration** of M is a triple $K = (q, n_1, n_2) \in Q \times \mathbb{N}_0 \times \mathbb{N}_0$.

The **transition relation** “⊢” on configurations is defined as follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: $K \vdash K'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : inc_1 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$</td>
</tr>
<tr>
<td>$q : dec_1 : q', q''$</td>
<td>$(q, 0, n_2) \vdash (q', 0, n_2)$ $\quad (q, n_1 + 1, n_2) \vdash (q'', n_1, n_2)$</td>
</tr>
<tr>
<td>$q : inc_2 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1, n_2 + 1)$</td>
</tr>
<tr>
<td>$q : dec_2 : q', q''$</td>
<td>$(q, n_1, 0) \vdash (q', n_1, 0)$ $\quad (q, n_1, n_2 + 1) \vdash (q'', n_1, n_2)$</td>
</tr>
</tbody>
</table>

The (!) **computation** of M is a finite sequence of the form (“M **halts**”)

$$K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \cdots \vdash (q_{fin}, n_1, n_2)$$

or an infinite sequence of the form (“M **diverges**”)

$$K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \ldots$$
2CM Example

- $\mathcal{M} = (Q, q_0, q_{\text{fin}}, \text{Prog})$
- commands of the form $q : \text{inc}_i : q'$ and $q : \text{dec}_i : q', q''$, $i \in \{1, 2\}$
- configuration $K = (q, n_1, n_2) \in Q \times \mathbb{N}_0 \times \mathbb{N}_0$.

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: $K \vdash K'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : \text{inc}_1 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1 + 1, n_2)$</td>
</tr>
<tr>
<td>$q : \text{dec}_1 : q', q''$</td>
<td>$(q, 0, n_2) \vdash (q', 0, n_2)$, $(q, n_1 + 1, n_2) \vdash (q'', n_1, n_2)$</td>
</tr>
<tr>
<td>$q : \text{inc}_2 : q'$</td>
<td>$(q, n_1, n_2) \vdash (q', n_1, n_2 + 1)$</td>
</tr>
<tr>
<td>$q : \text{dec}_2 : q', q''$</td>
<td>$(q, n_1, 0) \vdash (q', n_1, 0)$, $(q, n_1, n_2 + 1) \vdash (q'', n_1, n_2)$</td>
</tr>
</tbody>
</table>
Reducing Divergence to DC realisability: Idea In Pictures
Reducing Divergence to DC realisability: Idea

- A single configuration K of M can be encoded in an interval of length 4; being an encoding interval can be **characterised** by a DC formula.

- An interpretation on ‘Time’ encodes the computation of M if:
 - each interval $[4n, 4(n + 1)]$, $n \in \mathbb{N}_0$, **encodes** a configuration K_n,
 - each two subsequent intervals $[4n, 4(n + 1)]$ and $[4(n + 1), 4(n + 2)]$, $n \in \mathbb{N}_0$, encode configurations $K_n \vdash K_{n+1}$ **in transition relation**.

- Being encoding of the run can be **characterised** by DC formula $F(M)$.

- Then M **diverges** if and only if $F(M) \land \neg \Diamond [q_{fin}]$ is realisable from 0.
We use $\text{Obs} = \{\text{obs}\}$ with $\mathcal{D}(\text{obs}) = \mathcal{Q}_\mathcal{M} \cup \{C_1, C_2, B, X\}$.

Examples:

- $K = (q, 2, 3)$

$$
\begin{align*}
&\left(\begin{array}{c}
[q] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[B]; [C_1]; [B]; [C_1]; [B] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[X] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[B]; [C_2]; [B]; [C_2]; [B]; [C_2]; [B] \\
\wedge \\
\ell = 1
\end{array} \right)
\end{align*}
$$

- $K_0 = (q_0, 0, 0)$

$$
\begin{align*}
&\left(\begin{array}{c}
[q_0] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[B] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[X] \\
\wedge \\
\ell = 1
\end{array} \right); \\
&\left(\begin{array}{c}
[B] \\
\wedge \\
\ell = 1
\end{array} \right)
\end{align*}
$$

or, using abbreviations, $[q_0]^1; [B]^1; [X]^1; [B]^1$.
Construction of $F(M)$

In the following, we give DC formulae describing

- the initial configuration,
- the general form of configurations,
- the transitions between configurations,
- the handling of the final state.

$F(M)$ is the conjunction of all these formulae.
Initial and General Configurations

\begin{align*}
init & : \iff (\ell \geq 4 \implies [q_0]^1 ; [B]^1 ; [X]^1 ; [B]^1 ; \text{true}) \\
keep & : \iff \Box ([Q]^1 ; [B \lor C_1]^1 ; [X]^1 ; [B \lor C_2]^1 ; \ell = 4) \\
& \quad \implies \ell = 4 ; [Q]^1 ; [B \lor C_1]^1 ; [X]^1 ; [B \lor C_2]^1)
\end{align*}

where \(Q := \neg(X \lor C_1 \lor C_2 \lor B)\).
Auxiliary Formula Pattern copy

copy\((F, \{P_1, \ldots, P_n\}) \iff \forall c, d \bullet \Box ((F \land \ell = c) ; ([P_1 \lor \cdots \lor P_n] \land \ell = d) ; [P_1] ; \ell = 4
\implies \ell = c + d + 4 ; [P_1]
\ldots
\forall c, d \bullet \Box ((F \land \ell = c) ; ([P_1 \lor \cdots \lor P_n] \land \ell = d) ; [P_n] ; \ell = 4
\implies \ell = c + d + 4 ; [P_n]\)
q : inc_1 : q' (Increment)

(i) Change state

\[\Box([q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \implies \ell = 4; [q']^1; true) \]

(ii) Increment counter

\[\forall d \bullet \Box([q]^1; [B]^d; (\ell = 0 \lor [C_1]; [\neg X]); [X]^1; [B \lor C_2]^1; \ell = 4 \implies \ell = 4; [q']^1; ([B]; [C_1]; [B] \land \ell = d); true \]
\(q : \text{inc}_1 : q' \) \((\text{Increment})\)

(i) Keep rest of first counter

\[
copy([q]^1; [B \lor C_1]; [C_1], \{B, C_1\})
\]

(ii) Leave second counter unchanged

\[
copy([q]^1; [B \lor C_1]; [X]^1, \{B, C_2\})
\]
\(q : \text{dec}_1 : q', q'' \) (Decrement)

(i) If zero

\[\Box([q]^1; [B]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \implies \ell = 4; [q']^1; [B]^1; \text{true}) \]

(ii) Decrement counter

\[\forall d \bullet \Box([q]^1; ([B]; [C_1] \land \ell = d); [B]; [B \lor C_1]; [X]^1; [B \lor C_2]^1; \ell = \implies \ell = 4; [q'']^1; [B]^d; \text{true}) \]

(iii) Keep rest of first counter

\[\text{copy}([q]^1; [B]; [C_1]; [B_1], \{B, C_1\}) \]
Final State

\[
\text{copy}(\lceil q_{\text{fin}} \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil; \lceil B \lor C_2 \rceil^1, \{q_{\text{fin}}, B, X, C_1, C_2\})
\]
Satisfiability

- Following [Chaochen and Hansen, 2004] we can observe that

\[\mathcal{M} \text{ halts if and only if } \text{the DC formula } F(\mathcal{M}) \land \Diamond [q_{\text{fin}}] \text{ is satisfiable.}\]

This yields

Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.

(It is semi-decidable.)

- Furthermore, by taking the contraposition, we see

\[\mathcal{M} \text{ diverges if and only if } \mathcal{M} \text{ does not halt if and only if } F(\mathcal{M}) \land \neg \Diamond [q_{\text{fin}}] \text{ is not satisfiable.}\]

- Thus whether a DC formula is not satisfiable is not decidable, not even semi-decidable.
Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.
Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
Validity

- By Remark 2.13, \(F \) is valid iff \(\neg F \) is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
 - **Suppose** there were such a calculus \(C \).
 - By Lemma 2.22 it is semi-decidable whether a given DC formula \(F \) is a theorem in \(C \).
 - By the soundness and completeness of \(C \), \(F \) is a theorem in \(C \) if and only if \(F \) is valid.
 - Thus it is semi-decidable whether \(F \) is valid. **Contradiction.**
• Note: the DC fragment defined by the following grammar is **sufficient** for the reduction

\[
F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1,
\]

\(P\) a state assertion, \(x\) a global variable.

• Formulae used in the reduction are abbreviations:

\[
\begin{align*}
\ell &= 4 & \iff & \ell = 1 ; \ell = 1 ; \ell = 1 ; \ell = 1 \\
\ell &\geq 4 & \iff & \ell = 4 ; \text{true} \\
\ell &= x + y + 4 & \iff & \ell = x ; \ell = y ; \ell = 4
\end{align*}
\]

• Length 1 is not necessary — we can use \(\ell = z\) instead, with fresh \(z\).

• This is RDC augmented by "\(\ell = x\)" and "\(\forall x\)",
 which we denote by **RDC** + \(\ell = x, \forall x\).
References