Contents & Goals

Last Lecture:
- DC Implementables

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Facts: (un)decidability properties of DC in discrete/continuous time.
 - What’s the idea of the considered (un)decidability proofs?

- Content:
 - RDC in discrete time cont’d
 - Satisfiability and realisability from 0 is decidable for RDC in discrete time
 - Undecidable problems of DC in continuous time
Restricted DC (RDC)

\[F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 \}; F_2 \]

where \(P \) is a state assertion, but with boolean observables only.

Note:

- No global variables, thus don’t need \(\mathcal{V} \).

-
Discrete Time Interpretations

- An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $$X_\mathcal{I} : \text{Time} \to \mathcal{D}(X)$$

 with

 - Time = \mathbb{R}_0^+,
 - all discontinuities are in \mathbb{N}_0.

- An interval $[b, e] \subseteq \text{Intv}$ is called **discrete** if and only if $b, e \in \mathbb{N}_0$.

- We say (for a discrete time interpretation \mathcal{I} and a discrete interval $[b, e]$)

 $$\mathcal{I}, [b, e] \models F_1 \land F_2$$

 if and only if there exists $m \in [b, e] \cap \mathbb{N}_0$ such that

 $$\mathcal{I}, [b, m] \models F_1 \quad \text{and} \quad \mathcal{I}, [m, e] \models F_2$$

Differences between Continuous and Discrete Time

- Let P be a state assertion.

<table>
<thead>
<tr>
<th></th>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\models ? \quad ([P] ; [P])$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>$\implies [P]$</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>$\models ? [P] \implies ([P] ; [P])$</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

- In particular: $\ell = 1 \iff ([1] \land \neg([1] ; [1]))$ (in discrete time).
Expressiveness of RDC

- $\ell = 1 \iff [1] \land \neg([1] ; [1])$
- $\ell = 0 \iff \neg [1]$
- true $\iff \ell = 0 \lor (\ell = 0) \lor (\ell = 0)$
- $\int P = 0 \iff \neg \ell = 0$
- $\int P = 1 \iff (\int P = 0) \lor (\int P = 0) \lor (\int P = 0)\lor (\int P = 0)
- $\int P = k + 1 \iff \int P = k \lor (\int P = 0)$
- $\int P \geq k \iff (\int P > k) \lor \text{true}$
- $\int P > k \iff (\int P > k) \lor \text{true}$
- $\int P \leq k \iff (\int P > k)$
- $\int P < k \iff (\int P \leq k - 1)$

where $k \in \mathbb{N}$.

Decidability of Satisfiability/Realisability from 0

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
Sketch: Proof of Theorem 3.6

- Give a procedure to construct, given a formula F, a **regular** language $L(F)$ such that
 $\mathcal{I},[0,n]^*=F$ if and only if $w \in L(F)$
 where word w describes \mathcal{I} on $[0,n]$
 (suitability of the procedure: **Lemma 3.4**)

- Then F is satisfiable in discrete time if and only if $L(F)$ is not empty
 (**Lemma 3.5**)

- Theorem 3.6 follows because
 - $L(F)$ can **effectively** be constructed,
 - the emptiness problem is **decidable** for regular languages.
Construction of $L(F)$

- **Idea:**
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation on an interval of length 1,
 - a word of length n describes an interpretation on interval $[0,n]$.

- **Example:** Assume F contains exactly state variables X, Y, Z, then

$$\Sigma(F) = \{X \land Y \land Z, X \land Y \land \neg Z, X \land \neg Y \land Z, X \land \neg Y \land \neg Z, \neg X \land Y \land Z, \neg X \land Y \land \neg Z, \neg X \land \neg Y \land Z, \neg X \land \neg Y \land \neg Z\}.$$

\[w = \left(\neg X \land \neg Y \land \neg Z\right) \cdot \left(X \land \neg Y \land \neg Z\right) \cdot \left(X \land Y \land \neg Z\right) \cdot \left(X \land Y \land Z\right) \in \Sigma(F)^* \]

Construction of $L(F)$ more Formally

Definition 3.2. A word $w = a_1 \ldots a_n \in \Sigma(F)^*$ with $n \geq 0$ describes a discrete interpretation I on $[0,n]$ if and only if

$$\forall j \in \{1, \ldots, n\} \forall t \in [j-1,j[: I[a_j](t) = 1.$$

For $n = 0$ we put $w = \varepsilon$.

- Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^m a_i$ with $a_i \in \Sigma(F)$.
- Set $\text{DNF}(P) := \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$.
- Define $L(F)$ inductively:

\[
L([P]) = \text{DNF}(P)^*, \\
L(\neg F_1) = \Sigma(F)^* \setminus \chi(F_1), \\
L(F_1 \lor F_2) = \chi(F_1) \cup \chi(F_2), \\
L(F_1 ; F_2) = \chi(F_1) \cdot \chi(F_2).
\]
Lemma 3.4

Lemma 3.4. For all RDC formulae F, discrete interpretations I, $n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe I on $[0, n]$,

\[I, [0, n] \models F \text{ if and only if } w \in \mathcal{L}(F). \]

Sketch: Proof of Theorem 3.9

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

- $kern(L)$ contains all words of L whose prefixes are again in L.
- If L is regular, then $kern(L)$ is also regular.
- $kern(L(F))$ can effectively be constructed.
- We have

Lemma 3.8. For all RDC formulae F, F is realisable from 0 in discrete time if and only if $kern(L(F))$ is infinite.

- Infinity of regular languages is decidable.
Recall: Restricted DC (RDC)

\[
F ::= \lceil P \rceil \mid \lnot F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2
\]

where \(P \) is a state assertion, but with boolean observables only.

From now on: “RDC + \(\ell = x, \forall x \)”

\[
F ::= \lceil P \rceil \mid \lnot F_1 \mid F_1 \lor F_2 \mid F_1 ; F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1
\]
Theorem 3.10.
The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

- Given a two-counter machine M with final state q_{fin}.
- construct a DC formula $F(M) := encoding(M)$
- such that

\[M \text{ diverges if and only if } \text{ the DC formula} \]
\[F(M) \land \neg \diamond [q_{\text{fin}}] \]

is realisable from 0.

- If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn’t).
Recall: Two-counter machines

A **two-counter** machine is a structure

\[M = (Q, q_0, q_{\text{fin}}, \text{Prog}) \]

where

- \(Q \) is a finite set of **states**, comprising the **initial state** \(q_0 \) and the **final state** \(q_{\text{fin}} \)
- \(\text{Prog} \) is the **machine program**, i.e. a finite set of **commands** of the form

 \[q : \text{inc}_i : q' \quad \text{and} \quad q : \text{dec}_i : q', q'', \quad i \in \{1, 2\}. \]

- We assume deterministic 2CM: for each \(q \in Q \), at most one command starts in \(q \), and \(q_{\text{fin}} \) is the only state where no command starts.

2CM Configurations and Computations

- A **configuration** of \(M \) is a triple \(K = (q, n_1, n_2) \in Q \times \mathbb{N}_0 \times \mathbb{N}_0 \).

- The **transition relation** “\(\vdash \)” on configurations is defined as follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: (K \vdash K')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q : \text{inc}_1 : q')</td>
<td>((q, n_1, n_2) \vdash (q', n_1 + 1, n_2))</td>
</tr>
<tr>
<td>(q : \text{dec}_1 : q', q'')</td>
<td>((q, 0, n_2) \vdash (q', 0, n_2)) ((q, n_1 + 1, n_2) \vdash (q'', n_1, n_2))</td>
</tr>
<tr>
<td>(q : \text{inc}_2 : q')</td>
<td>((q, n_1, n_2) \vdash (q', n_1, n_2 + 1))</td>
</tr>
<tr>
<td>(q : \text{dec}_2 : q', q'')</td>
<td>((q, n_1, 0) \vdash (q', n_1, 0)) ((q, n_1 + 1, n_2) \vdash (q'', n_1, n_2))</td>
</tr>
</tbody>
</table>

- The (!) **computation** of \(M \) is a finite sequence of the form \(\text{("M halts") } \)

 \[K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \cdots \vdash (q_{\text{fin}}, n_1, n_2) \]

or an infinite sequence of the form \(\text{("M diverges") } \)

\[K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \cdots \]
2CM Example

- \(M = (Q, q_0, q_{\text{fin}}, \text{Prog}) \)
- Commands of the form \(q : \text{inc}_i : q' \) and \(q : \text{dec}_i : q', q'' \), \(i \in \{1, 2\} \)
- Configuration \(K = (q, n_1, n_2) \in Q \times N_0 \times N_0 \).

<table>
<thead>
<tr>
<th>Command</th>
<th>Semantics: (K \vdash K')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q : \text{inc}_1 : q')</td>
<td>((q, n_1, n_2) \vdash (q', n_1 + 1, n_2))</td>
</tr>
<tr>
<td>(q : \text{dec}_1 : q', q'')</td>
<td>((q, n_1, n_2 + 1) \vdash (q', n_1, n_2))</td>
</tr>
</tbody>
</table>

Reducing Divergence to DC realisability: Idea In Pictures

- \(2CM \) diverges if there exists \(m : k_0 + k_1 + \ldots \) such that \(I \vdash F(M) \wedge \neg \phi_{\text{div}} \) and \(F(M) \) intuitively requires:
 - \([0, d]\) encodes \((q_0, 0, 0) \)
 - \([nd, (n+1)d]\) encodes a configuration
 - \([nd, (n+1)d]\) and \([nd, (n+1)d]\) encode configurations which are \(\lnot \text{rel}^{\text{rel}} \)
 - if \(q_{\text{div}} \) is reached, we stay there.
Reducing Divergence to DC realisability: Idea

- A single configuration K of \mathcal{M} can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.

- An interpretation on ‘Time’ encodes the computation of \mathcal{M} if
 - each interval $[4n, 4(n+1)]$, $n \in \mathbb{N}_0$, encodes a configuration K_n,
 - each two subsequent intervals $[4n, 4(n+1)]$ and $[4(n+1), 4(n+2)]$, $n \in \mathbb{N}_0$, encode configurations $K_n \vdash K_{n+1}$ in transition relation.

- Being encoding of the run can be characterised by DC formula $F(\mathcal{M})$.

- Then \mathcal{M} diverges if and only if $F(\mathcal{M}) \land \neg \Box [q_{\text{fin}}]$ is realisable from 0.

Encoding Configurations

- We use $\text{Obs} = \{\text{obs}\}$ with $D(\text{obs}) = \mathcal{Q}_\mathcal{M} \cup \{C_1, C_2, B, X\}$.

Examples:

- $K = (q, 2, 3)$

$\left(\begin{array}{c}
[q] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
[B] ; [C_1] ; [B] ; [C_1] ; [B] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
[X] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
\ell = 1
\end{array} \right) ;$

- $K_0 = (q_0, 0, 0)$

$\left(\begin{array}{c}
[q_0] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
[B] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
[X] \\
\ell = 1
\end{array} \right) ; \left(\begin{array}{c}
[B] \\
\ell = 1
\end{array} \right) ;$

or, using abbreviations, $[q_0]^1 ; [B]^1 ; [X]^1 ; [B]^1$.
Construction of $F(\mathcal{M})$

In the following, we give DC formulae describing

- the initial configuration,
- the general form of configurations,
- the transitions between configurations,
- the handling of the final state.

$F(\mathcal{M})$ is the conjunction of all these formulae.

Initial and General Configurations

\[
\text{init} : \iff (\ell \geq 4 \implies [q_0]^1; [B]^1; [X]^1; [B]^1; \text{true})
\]

\[
\text{keep} : \iff \Box([Q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \\
\implies \ell = 4; [Q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1)
\]

where $Q := \neg(X \lor C_1 \lor C_2 \lor B)$.
Auxiliary Formula Pattern copy

\[\forall c, d \bullet \Box((F \land \ell = c) \land (P_1 \lor \cdots \lor P_n \land \ell = d) \land [P_1] \land \ell = 4 \iff \ell = c + d + 4); [P_1] \]

\ldots

\[\forall c, d \bullet \Box((F \land \ell = c) \land (P_1 \lor \cdots \lor P_n \land \ell = d) \land [P_n] \land \ell = 4 \iff \ell = c + d + 4); [P_n] \]

\[q : inc_{C_1} : q' \text{ (Increment)} \]

(i) Change state

\[\Box([q]^1; [B \lor C_1]^1; [X]^1; [B \lor C_2]^1; \ell = 4 \iff \ell = 4; [q']^1; true) \]

(ii) Increment counter

\[\forall d \bullet \Box([q]^1; [B]^d; (\ell = 0 \lor [C_1]; [\neg X]); [X]^1; [B \lor C_2]^1; \ell = 4 \iff \ell = 4; [q']^1; ([B]; [C_1]; [B] \land \ell = d); true \]
$q : \text{inc}_1 : q'$ (Increment)

(i) Keep rest of first counter

\[\text{copy}([q]^1 ; [B \lor C_1] ; [C_1], \{B, C_1\}) \]

(ii) Leave second counter unchanged

\[\text{copy}([q]^1 ; [B \lor C_1] ; [X]^1, \{B, C_2\}) \]

$q : \text{dec}_1 : q', q''$ (Decrement)

(i) If zero

\[\square([q]^1 ; [B]^1 ; [X]^1 ; [B \lor C_2]^1 ; \ell = 4 \implies \ell = 4 ; [q']^1 ; [B]^1 ; \text{true}) \]

(ii) Decrement counter

\[\forall d \bullet \square([q]^1 ; ([B] ; [C_1] \land \ell = d) ; [B] ; [B \lor C_1] ; [X]^1 ; [B \lor C_2]^1 ; \ell = \]
\[\implies \ell = 4 ; [q'']^1 ; [B]^d ; \text{true}) \]

(iii) Keep rest of first counter

\[\text{copy}([q]^1 ; [B] ; [C_1] ; [B_1], \{B, C_1\}) \]
Final State

\[
\text{copy}([q_{\text{fin}}]^1 ; [B \lor C_1]^1 ; [X] ; [B \lor C_2]^1 , \{q_{\text{fin}}, B, X, C_1, C_2\})
\]

Satisfiability

- Following [Chaochen and Hansen, 2004] we can observe that

 \(\mathcal{M}\) **halts if and only if** the DC formula \(F(\mathcal{M}) \land \Diamond [q_{\text{fin}}]\) is **satisfiable**.

 This yields

 Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.

 (It is semi-decidable.)

- Furthermore, by taking the contraposition, we see

 \(\mathcal{M}\) **diverges if and only if** \(\mathcal{M}\) does not **halt**

 if and only if \(F(\mathcal{M}) \land \neg \Diamond [q_{\text{fin}}]\) is **not** satisfiable.

- Thus whether a DC formula is **not satisfiable** is not decidable, not even semi-decidable.
By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

This provides us with an alternative proof of Theorem 2.23 (“there is no sound and complete proof system for DC”):
Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
 - **Suppose** there were such a calculus \mathcal{C}.
 - By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in \mathcal{C}.
 - By the soundness and completeness of \mathcal{C}, F is a theorem in \mathcal{C} if and only if F is valid.
 - Thus it is semi-decidable whether F is valid. **Contradiction.**

Discussion

- Note: the DC fragment defined by the following grammar is **sufficient** for the reduction

$$F ::= [P] \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1 \cdot F_2 \mid \ell = 1 \mid \ell = x \mid \forall x \bullet F_1,$$

P a state assertion, x a global variable.

- Formulae used in the reduction are abbreviations:

$$\ell = 4 \iff \ell = 1 \cdot \ell = 1 \cdot \ell = 1
\ell \geq 4 \iff \ell = 4 \cdot \text{true}
\ell = x + y + 4 \iff \ell = x \cdot \ell = y \cdot \ell = 4$$

- Length 1 is not necessary — we can use $\ell = z$ instead, with fresh z.

- This is RDC augmented by "$\ell = x$" and "$\forall x$", which we denote by RDC + $\ell = x, \forall x$.

References
