Contents & Goals

- Last Lecture:
 - DC Implementables

- This Lecture:
 - Educational Objectives:
 - Capabilities for following tasks/questions.
 - Facts: (un)decidability properties of DC in discrete/continuous time.
 - What's the idea of the considered (un)decidability proofs?

- Content:
 - RDC in discrete time cont'd
 - Satisfiability and realisability from 0 is decidable for RDC in discrete time
 - Undecidable problems of DC in continuous time

Restricted DC (RDC)

F ::= ⌈P⌉ | ¬F | F1 | F1 ∨ F2 | F1 ; F2

where P is a state assertion, but with boolean observables only.

Note:
- No global variables, thus don't need V.

Discrete Time Interpretations

- An interpretation I is called discrete time interpretation if and only if,
 for each state variable X, XI:
 Time → D(X)
 with
 - Time = R+0,
 - all discontinuities are in N0.

- An interval [b, e] ⊂ Intv is called discrete if and only if b, e ∈ N0.

- We say (for a discrete time interpretation I and a discrete interval [b, e])
 I, [b, e] |= F1 ; F2 if and only if there exists m ∈ [b, e] ∩ N0 such that
 I, [b, m] |= F1 and I, [m, e] |= F2.

Differences between Continuous and Discrete Time

<table>
<thead>
<tr>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>✘</td>
</tr>
</tbody>
</table>

- In particular:
 - ℓ = 1 ⇐⇒ (⌈1⌉ ∧ ¬(⌈1⌉; ⌈1⌉)) (in discrete time).
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.6.

The satisfiability problem for RDC with discrete time is decidable.

Sketch

The satisfiability problem for RDC with discrete time is decidable.

Expressiveness of RDC

Theorem 3.9.

The satisfiability problem for RDC with discrete time is decidable.
Lemma 3.4.

For all RDC formulae F, discrete interpretations I, $n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe I on $[0, n]$, $I\mid_{[0, n]} = F$ if and only if $w \in L(F)$.

Sketch: Proof of Theorem 3.9

Theorem 3.9. The realisability problem for RDC with discrete time is decidable.

- $\text{kern}(L)$ contains all words of L whose prefixes are again in L.
- If L is regular, then $\text{kern}(L)$ is also regular.
- $\text{kern}(L(F))$ can effectively be constructed.
- We have Lemma 3.8.

For all RDC formulae F, F is realisable from 0 in discrete time if and only if $\text{kern}(L(F))$ is infinite.

- Infinity of regular languages is decidable.

(Variants of) RDC in Continuous Time

Recall: Restricted DC (RDC)

$F ::= \lceil P \rceil | \neg F_1 | F_1 \lor F_2 | F_1 ; F_2 | \ell = 1 | \ell = x | \forall x \cdot F_1$

where P is a state assertion, but with boolean observables only.

From now on: "RDC + $\ell = x, \forall x""

$F ::= \lceil P \rceil | \neg F_1 | F_1 \lor F_2 | F_1 ; F_2 | \ell = 1 | \ell = x | \forall x \cdot F_1$

Undecidability of Satisfiability/Realisability from 0

Theorem 3.10. The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

- Given a two-counter machine M with final state q_{fin}, construct a DC formula $F(M) := $ encoding (M)
- such that M diverges if and only if the DC formula $F(M) \land \neg \diamondsuit \lceil q_{\text{fin}} \rceil$ is realisable from 0.
- If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn't).
where

\[\mathcal{I}(\mathcal{F})(x) = \{ x \in \mathbb{B}^\omega \mid \exists n, q \in \mathbb{N} : (x, n, q) \in \mathcal{F} \} \]

is realisable from \(k \).

\[B \subseteq \mathbb{F} \]

or, using abbreviations,

\[n \leq 1 \]

Each two subsequent intervals \([n, n+1)\]

by a DC formula.

An interpretation on 'Time' encodes

\[\text{obs} \{ \text{dec} \} \]

Commands of the form \(\text{dec} : q, n \) is a finite sequence of the form ("where

\[\text{dec} : q, n \]

\[\text{dec} : q, n \]

of \(K \) can be realised in any configuration of the form

\[(x, n, q) \in \mathcal{F} \]
\[Q \equiv \{ \text{both modes} \} \land \{ \text{dec} : q \} \land \{ \text{inc} : q \} \]

\[\begin{align*}
\{ \text{both modes} \} & \equiv \{ \text{dec} : q \} \land \{ \text{inc} : q \} \\
\{ \text{dec} : q \} & \equiv \{ \text{dec} : q \} \\
\{ \text{inc} : q \} & \equiv \{ \text{inc} : q \}
\end{align*}\]

\[Q = \{ \text{both modes} \} \land \{ \text{dec} : q \} \land \{ \text{inc} : q \}\]
Following [Chaochen and Hansen, 2004] we can observe that M halts if and only if the DC formula $F(M) \land \Diamond\lceil q_{\text{fin}} \rceil$ is satisfiable. This yields Theorem 3.11.

The satisfiability problem for DC with continuous time is undecidable. (It is semi-decidable.)

Furthermore, by taking the contraposition, we see M diverges if and only if M does not halt if and only if $F(M) \land \neg \Diamond\lceil q_{\text{fin}} \rceil$ is not satisfiable.

Thus whether a DC formula is not satisfiable is not decidable, not even semi-decidable.

By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so Corollary 3.12.

The validity problem for DC with continuous time is undecidable, not even semi-decidable.

This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):

• Suppose there were such a calculus C.
 • By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in C.
 • By the soundness and completeness of C, F is a theorem in C if and only if F is valid.
 • Thus it is semi-decidable whether F is valid.
 • Contradiction.

Discussion

Note: the DC fragment defined by the following grammar is sufficient for the reduction $F ::= \lceil P \rceil | \neg F | F_1 \lor F_2 | F_1; F_2 | \ell = 1 | \ell = x | \forall x \cdot F_1$, P a state assertion, x a global variable.

Formulae used in the reduction are abbreviations:

- $\ell = 4 \iff \ell = 1$
- $\ell = 1 \iff \ell = z$
- $\ell \geq 4 \iff \ell = 4$
- $true \iff \ell = x$
- $\ell = x + y + 4 \iff \ell = x$
- $\ell = y$
- $\ell = 4$

Length 1 is not necessary — we can use $\ell = z$ instead, with fresh z.

This is RDC augmented by "$\ell = x$" and "$\forall x$", which we denote by $\text{RDC} + \ell = x, \forall x$.