Contents & Goals

Last Lecture:
- Extended Timed Automata Cont’d
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Are all DC formulae testable?
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata? Idea of the proof?
- Content:
 - An untestable DC formula.
 - Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
 - Why this is unfortunate.
 - Timed regular languages are not everything.
Recall: Testability

Definition 6.1. A DC formula F is called testable if an observer (or test automaton (or monitor)) A_F exists such that for all networks $N = C(A_1, \ldots, A_n)$ it holds that

\[N \models F \iff C(A_1', \ldots, A_n', A_F) \models \Box \neg (A_F.q_{bad}) \]

Otherwise it’s called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.
Whenever we observe a change from A to $\neg A$ at time t_A, the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is A_F such that, for all networks \mathcal{N}, we have

\[\mathcal{N} \models F \iff C(A'_1, \ldots, A'_n, A_F) \models \forall \Box \neg(A_F . q_{bad}) \]

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.

Consider the following time points:

- $t_A := 1$
- $t_i^B := t_A + \frac{2i - 1}{2(n+1)}$ for $i = 1, \ldots, n + 1$
- $t_i^C \in [t_i^B + 1 - \frac{1}{4(n+1)}, t_i^B + 1 + \frac{1}{4(n+1)}]$ for $i = 1, \ldots, n + 1$

with $t_i^C - t_i^B \neq 1$ for $1 \leq i \leq n + 1$.

Example: $n = 3$
Example: \(n = 3 \)

- The shown interpretation \(\mathcal{I} \) satisfies assumption of property.
- It has \(n + 1 \) candidates to satisfy commitment.
- By choice of \(t_C^i \), the commitment is not satisfied; so \(F \) not satisfied.
- Because \(A_F \) is a test automaton for \(F \), is has a computation path to \(q_{bad} \).
- Because \(n = 3 \), \(A_F \) can not save all \(n + 1 \) time points \(t_B^i \).
- Thus there is \(1 \leq i_0 \leq n \) such that all clocks of \(A_F \) have a valuation which is not in \(2 - t_B^{i_0} + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}) \)

- Because \(A_F \) is a test automaton for \(F \), is has a computation path to \(q_{bad} \).
- Thus there is \(1 \leq i_0 \leq n \) such that all clocks of \(A_F \) have a valuation which is not in \(2 - t_B^{i_0} + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}) \)

- Modify the computation to \(\mathcal{I}' \) such that \(t_C^i := t_B^{i_0} + 1 \).
- Then \(\mathcal{I}' \models F \), but \(A_F \) reaches \(q_{bad} \) via the same path.
- That is: \(A_F \) claims \(\mathcal{I}' \not\models F \).
- Thus \(A_F \) is not a test automaton. \textbf{Contradiction.}
\[L = \{ a, b \} \]

\[L(A) = \{ a^n b a^m \mid n, m \in \mathbb{N} \} \]

\[(ab)^* \]
Timed Büchi Automata

[Alur and Dill, 1994]
... vs. Timed Automata

\[\xi = \langle \text{off}, 0 \rangle, 0 \xrightarrow{\text{press} \ ?} \langle \text{light}, 0 \rangle, 1 \xrightarrow{\text{press} \ ?} \langle \text{light}, 3 \rangle, 4 \xrightarrow{\text{press} \ ?} \langle \text{bright}, 3 \rangle, 4 \xrightarrow{\ldots} \]

\(\xi \) is a computation path and run of \(A \).

New: Given a timed word

\[(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), (b, t) \ldots \]

does \(A \) accept it?

New: acceptance criterion is visiting accepting state infinitely often.

Timed Languages

Definition. A time sequence \(\tau = \tau_1, \tau_2, \ldots \) is an infinite sequence of time values \(\tau_i \in \mathbb{R}^+ \), satisfying the following constraints:

(i) Monotonicity: \(\tau \) increases strictly monotonically, i.e. \(\tau_i < \tau_{i+1} \) for all \(i \geq 1 \).

(ii) Progress: For every \(t \in \mathbb{R}^+ \), there is some \(i \geq 1 \) such that \(\tau_i > t \).

Definition. A timed word over an alphabet \(\Sigma \) is a pair \((\sigma, \tau)\) where

- \(\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega \) is an infinite word over \(\Sigma \), and
- \(\tau \) is a time sequence.

Definition. A timed language over an alphabet \(\Sigma \) is a set of timed words over \(\Sigma \).
Example: Timed Language

Timed word over alphabet Σ: a pair (σ, τ) where
- $\sigma = \sigma_1, \sigma_2, \ldots$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$L_{ct} = \{(ab)^\omega, \tau) | \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\}$$

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by
\[\delta ::= x \leq c | c \leq x | \neg \delta | \delta_1 \land \delta_2\]
where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A **timed Büchi automaton** (TBA) A is a tuple $(\Sigma, S, S_0, X, E, F)$, where
- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.
- $F \subseteq S$ is a set of accepting states.
Example: TBA

\[A = (\Sigma, S, S_0, X, E, F) \]
\[(s, s', a, \lambda, \delta) \in E\]

(Accepting) TBA Runs

Definition. A run \(r \), denoted by \((\bar{s}, \bar{\nu})\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an **infinite** sequence of the form

\[r : (s_0, \nu_0) \xrightarrow{\tau_1} (s_1, \nu_1) \xrightarrow{\tau_2} (s_2, \nu_2) \xrightarrow{\tau_3} \ldots \]

with \(s_i \in S \) and \(\nu_i : X \to \mathbb{R}_+^+ \), satisfying the following requirements:

- **Initiation:** \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution:** for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)\) such that
 - \((\nu_{i-1} + (\tau_i - \tau_{i-1})) \) satisfies \(\delta_i \) and
 - \(\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0] \).

The set \(\inf(r) \subseteq S \) consists of those states \(s \in S \) such that \(s = s_i \) for infinitely many \(i \geq 0 \).

Definition. A run \(r = (\bar{s}, \bar{\nu}) \) of a TBA over timed word \((\sigma, \tau)\) is called **accepting** (run) if and only if \(\inf(r) \cap F \neq \emptyset \).
Example: (Accepting) Runs

\[r : (s_0, \nu_0) \xrightarrow{\tau_1} (s_1, \nu_1) \xrightarrow{\sigma_2} (s_2, \nu_2) \xrightarrow{\tau_3} \ldots \text{ initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \text{ s.t. } (\nu_{i-1} + (\tau_i - \tau_{i-1})) = \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1})) \lfloor \lambda_i = 0 \lfloor. \text{ Accepting iff } \text{inf}(r) \cap F \neq \emptyset. \]

Timed word: \((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots \)

- **Can we construct any run?** Is it accepting?

\[\langle s_0, 0 \rangle \xrightarrow{a} \langle s_1, 0 \rangle \xrightarrow{b} \langle s_2, 1 \rangle \xrightarrow{a} \langle s_3, 1 \rangle \ldots \checkmark \]

- **Can we construct a non-run?**

- **Can we construct a (non-)accepting run?**

The Language of a TBA

Definition. For a TBA \(\mathcal{A} \), the language \(L(\mathcal{A}) \) of timed words it accepts is defined to be the set

\[\{ (\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau) \}. \]

For short: \(L(\mathcal{A}) \) is the language of \(\mathcal{A} \).

Definition. A timed language \(L \) is a timed regular language if and only if \(L = L(\mathcal{A}) \) for some TBA \(\mathcal{A} \).
Example: Language of a TBA

\[L(A) = \{ (\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau) \} \]

Claim:

\[L(A) = L_{\text{crt}} = \{ ((ab)^\omega, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2) \} \]

Question: Is \(L_{\text{crt}} \) timed regular or not?

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
The Universality Problem

• **Given:** A TBA A over alphabet Σ.
• **Question:** Does A accept all timed words over Σ?
 In other words: Is $L(A) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}$.

\[\Sigma = \{a, b, c\} \quad A: \]

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

(“The class Π^1_1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

• Let B be a Büchi Automaton over Σ.
• B is universal if and only if $L(B) = \emptyset$.
• B' such that $L(B') = \overline{L(B)}$ is effectively computable.
• Language emptyness is decidable for Büchi Automata.
Proof Idea

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

Proof Idea:
• Consider a language L_{undec} which consists of the recurring computations of a 2-counter machine M.
• Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with $L(A) = \overline{L_{\text{undec}}}$.
• Then A is universal if and only if L_{undec} is empty... which is the case if and only if M doesn’t have a recurring computation.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M
• has two counters C, D and
• a finite program consisting of n instructions.
• An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
• A configuration of M is a triple $\langle i, c, d \rangle$:
 program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.
• A computation of M is an infinite consecutive sequence
 \[\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots \]
that is, $\langle i_j+1, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.
A computation of M is called recurring iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.
Step 1: The Language of Recurring Computations

- Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.
(In particular s.t. $L_{\text{undec}} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.
- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

$$b_1 \ a_1 \ldots \ a_1 \ a_2 \ldots \ a_2 = b_1a_1^ca_2^d$$

![Diagram](image)

Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_i, a_1^c a_2^d b_i, a_1^c a_2^d b_i, \ldots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.

For all $j \in \mathbb{N}_0$.

- the time of b_{ij} is j.
- if $c_{j+1} = c_j$:
 for every a_1 at time t in the interval $[j, j+1]$ there is an a_1 at time $t+1$,
- if $c_{j+1} = c_j + 1$:
 for every a_1 at time t in the interval $[j+1, j+2]$, except for the last one, there is an a_1 at time $t - 1$,
- if $c_{j+1} = c_j - 1$:
 for every a_1 at time t in the interval $[j, j+1]$, except for the last one, there is an a_1 at time $t + 1$,

And analogously for the a_2’s.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{\text{undec}}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text{undec}}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_1a_1^0a_2^1b_1a_1^2a_2^0$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.
- the time of b_{i_j} is j.
- if $c_{j+1} = c_j (= c_j + 1, = c_j - 1)$:

 (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in \mathbb{N}$.
 (ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.
 (iii) The timed word is not recurring, i.e., it has only finitely many b_i.
 (iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Plan: Construct a TBA \mathcal{A}_0 for case (i), a TBA $\mathcal{A}_{\text{init}}$ for case (ii), a TBA $\mathcal{A}_{\text{recur}}$ for case (iii), and one TBA \mathcal{A}_i for each instruction for case (iv).

Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{\text{init}} \cup \mathcal{A}_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_i$$
Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in [j, j+1[$.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

- It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

- A_{recur} accepts words with only finitely many b_i.

Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j+1, j+2]$ doesn’t faithfully represent the effect of instruction b_j on the configuration encoded in $[j, j+1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$.
 - “Easy to construct.”
- A_7^2 is

\[
\begin{array}{c}
\text{f}_0 \\
 x \geq 0 \\
 b_7
\end{array} \quad \begin{array}{c}
\text{f}_1 \\
 x < 1 \\
 a_1
\end{array} \quad \begin{array}{c}
\text{f}_2 \\
 x \neq 1 \\
 \neg a_1, x = 1
\end{array}
\]

- A_7^3 accepts words which encode unexpected increment of counter C.
- A_7^4, \ldots, A_7^6 accept words with missing decrement of D.

Consequences: Language Inclusion

- **Given:** Two TBAs \mathcal{A}_1 and \mathcal{A}_2 over alphabet B.
- **Question:** Is $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

Possible applications of a decision procedure:
- Characterise the allowed behaviour as \mathcal{A}_2 and model the design as \mathcal{A}_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

- If **language inclusion** was decidable, then we could use it to decide universality of \mathcal{A} by checking

$$\mathcal{L}(\mathcal{A}_{\text{univ}}) \subseteq \mathcal{L}(\mathcal{A})$$

where $\mathcal{A}_{\text{univ}}$ is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given**: A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question**: Is \overline{W} timed regular?

Possible applications of a decision procedure:
- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = L(A_2)$ and check

 $$L(A_1) \cap L(A_3) = \emptyset,$$

 that is, whether the design has any non-allowed behaviour.
- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable. (Proof by construction of region automaton [Alur and Dill, 1994].)

Consequences: Complementation

- **Given**: A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question**: Is \overline{W} timed regular?

- If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π_1^1-hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA A:

$$L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}$$

Complement language:

$$\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1\}.$$
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:
- There are strictly more timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[
\left\{ ((abc)^{\omega}, \tau) \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2}) \right\}
\]
hat is a PLC?

- microprocessor, memory, **timers**
- digital (or analog) I/O ports
- possibly RS 232, fieldbuses, networking
- robust hardware
- reprogrammable
- **standardised programming model** (IEC 61131-3)
Where are PLC employed?

- mostly process automatisation
 - production lines
 - packaging lines
 - chemical plants
 - power plants
 - electric motors, pneumatic or hydraulic cylinders
 - ...
- not so much: product automatisation, there
 - tailored or OTS controller boards
 - embedded controllers
 - ...

How are PLC programmed?

- PLC have in common that they operate in a cyclic manner:
 - read inputs
 - compute
 - write outputs

- Cyclic operation is repeated until external interruption (such as shutdown or reset).
- Cycle time: typically a few milliseconds. [?]

- Programming for PLC means providing the "compute" part.
- Input/output values are available via designated local variables.
Why study PLC?

- **Note:**
 the discussion here is **not limited** to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with **at least one** real-time clock will do.
 (Where a **real-time clock** is a piece of hardware such that,
 - we can program it to wait for \(t \) time units,
 - we can query whether the set time has elapsed,
 - if we program it to wait for \(t \) time units,
 it does so with negligible deviation.)

- And strictly speaking, we don’t even need “full blown” operating systems.

- PLC are just a formalisation on a good level of abstraction:
 - there are inputs **somehow** available as local variables,
 - there are outputs **somehow** available as local variables,
 - **somehow**, inputs are polled and outputs updated atomically,
 - there is **some** interface to a real-time clock.