Contents & Goals

Last Lecture:

- Extended Timed Automata Cont’d
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Are all DC formulae testable?
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata? Idea of the proof?

- Content:
 - An untestable DC formula.
 - Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
 - Why this is unfortunate.
 - Timed regular languages are not everything.
Untestable DC Formulae
Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) A_F exists such that for all networks $\mathcal{N} = C(A_1, \ldots, A_n)$ it holds that

$$\mathcal{N} \models F \iff C(A'_1, \ldots, A'_n, A_F) \models \forall \Box \neg (A_F \cdot q_{bad})$$

Otherwise it’s called **untestable**.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.
Whenever we observe a change from A to $\neg A$ at time t_A, the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is A_F such that, for all networks \mathcal{N}, we have

\[
\mathcal{N} \models F \iff C(A'_1, \ldots, A'_n, A_F) \models \forall \Box \neg (A_F \cdot q_{bad})
\]

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.
Consider the following time points:

- \(t_A := 1 \)
- \(t_B^i := t_A + \frac{2i-1}{2(n+1)} \) for \(i = 1, \ldots, n+1 \)
- \(t_C^i \in \left[t_B^i + 1 - \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right] \) for \(i = 1, \ldots, n+1 \)

with \(t_C^i - t_B^i \neq 1 \) for \(1 \leq i \leq n+1 \).

Example: \(n = 3 \)
Example: \(n = 3 \)

- The shown interpretation \(\mathcal{I} \) satisfies **assumption** of property.
- It has \(n + 1 \) candidates to satisfy **commitment**.
- By choice of \(t^i_C \), the commitment is not satisfied; so \(F \) not satisfied.
- Because \(\mathcal{A}_F \) is a test automaton for \(F \), is has a computation path to \(q_{bad} \).
- Because \(n = 3 \), \(\mathcal{A}_F \) can not save all \(n + 1 \) time points \(t^i_B \).
- Thus there is \(1 \leq i_0 \leq n \) such that all clocks of \(\mathcal{A}_F \) have a valuation which is not in \(2 - t^{i_0}_B + \left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)} \right) \).
Example: $n = 3$

- Because A_F is a test automaton for F, it has a computation path to q_{bad}.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t_B^{i_0} + \left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)} \right)$.
- Modify the computation to I' such that $t_C^{i_0} := t_B^{i_0} + 1$.
- Then $I' \models F$, but A_F reaches q_{bad} via the same path.
- That is: A_F claims $I' \not\models F$.
- Thus A_F is not a test automaton. **Contradiction.**
\[L = \{ a, b \} \]

\[A = \{ Q, \nu_0, \rightarrow, \bar{T} \} \]

\[L = ab^* \]

\[L(A) = \{ \sigma_0 \sigma_1 \cdots \in \Sigma^* \mid \gamma_0 \xrightarrow{\sigma_0} \gamma_1 \cdots \xrightarrow{\sigma_m} \gamma_n, \gamma_n \in \bar{T} \} \]

- \(baab \in \? L(A) \)
- \(abb \in \? L(A) \)
- \(aba \in \? L(A) \)
- \(e \in \? L(A) \)
- \(abc \in \? L(A) \)

Diagram B:

- \((ab)^* \)
- \(aba, x \)
- \(abc, x \)
\[\Sigma = \{ a, b, c \} \]

\[\Sigma^\omega \]

\[(abc)^+ \]

\[A = (Q, \Sigma, \delta, q_0, F) \]

\[q_0 \]

\[Q \]

\[\exists \]

\[L(A) = \{ s_0 s_1 \ldots \in \Sigma^\omega \mid q_0 \xrightarrow{s_0} q_1 \xrightarrow{s_1} q_2 \ldots \text{ and } q_i \in F \text{ for infinitely many } i \} \]

\[B: (abc) \]

\[(abc)^\omega \]
Timed Büchi Automata

[Alur and Dill, 1994]
\[\xi = \langle \text{off}, 0 \rangle, 0 \xrightarrow{\text{press?}} \langle \text{light}, 0 \rangle, 1 \xrightarrow{\text{press?}} \langle \text{light}, 3 \rangle, 4 \xrightarrow{\text{press?}} \langle \text{bright}, 3 \rangle, 4 \xrightarrow{\ldots} \]

\(\xi \) is a computation path and run of \(\mathcal{A} \).

New: Given a timed word

\((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), (b, 6.5), \ldots\)

does \(\mathcal{A} \) accept it?

New: acceptance criterion is visiting accepting state infinitely often.
Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

(i) **Monotonicity:**
τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \geq 1$.

(ii) **Progress:** For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \cdots \in \Sigma^\omega$ is an infinite word over Σ, and
- τ is a time sequence.

Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ.
Timed word over alphabet Σ: a pair (σ, τ) where

- σ = σ₁, σ₂, … is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

\[L_{crt} = \{((ab)\omega, \tau) \mid \exists i \forall j \geq i: (\tau_{2j} < \tau_{2j-1} + 2)\} \]
Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions. An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.
- $F \subseteq S$ is a set of accepting states.
Example: TBA

\[\mathcal{A} = (\Sigma, S, S_0, X, E, F) \]
\[(s, s', a, \lambda, \delta) \in E \]
Definition. A run \(r \), denoted by \((\vec{s}, \vec{\nu})\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an \textbf{infinite} sequence of the form

\[
r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1}{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2}{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3}{\tau_3} \ldots
\]

with \(s_i \in S \) and \(\nu_i : X \rightarrow \mathbb{R}^+_0 \), satisfying the following requirements:

- **Initiation**: \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution**: for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)\) such that
 - \((\nu_{i-1} + (\tau_i - \tau_{i-1}))\) satisfies \(\delta_i \) and
 - \(\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0] \).

The set \(\inf(r) \subseteq S \) consists of those states \(s \in S \) such that \(s = s_i \) for infinitely many \(i \geq 0 \).

Definition. A run \(r = (\vec{s}, \vec{\nu}) \) of a TBA over timed word \((\sigma, \tau)\) is called (an) \textbf{accepting} (run) if and only if \(\inf(r) \cap F \neq \emptyset \).
Example: (Accepting) Runs

\[r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1}{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2}{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3}{\tau_3} \ldots \] initial and \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \) s.t.
\((\nu_{i-1} + (\tau_i - \tau_{i-1})) \models \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0].\) Accepting iff \(\inf (r) \cap F \neq \emptyset.\)

Timed word: \((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots\)

- Can we construct any run? Is it accepting?
 \[\langle s_0, x=0 \rangle \xrightarrow{a}{1.0} \langle s_2, 0 \rangle \xrightarrow{b}{2.0} \langle s_3, 1.0 \rangle \ldots \checkmark \]

- Can we construct a non-run?

- Can we construct a (non-)accepting run?

\[\langle s_0, 0 \rangle \xrightarrow{a}{2.6} \langle s_1, 1 \rangle \xrightarrow{b}{7.6} \langle s_2, 2 \rangle \xrightarrow{a}{3.0} \langle s_3, 3 \rangle \ldots \]
Definition. For a TBA A, the language $L(A)$ of timed words it accepts is defined to be the set
\[\{ (\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau) \} . \]

For short: $L(A)$ is the language of A.

Definition. A timed language L is a timed regular language if and only if $L = L(A)$ for some TBA A.
Example: Language of a TBA

\[L(\mathcal{A}) = \{(\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau)\}. \]

Claim:

\[L(\mathcal{A}) = L_{\text{crt}} \left(= \{((ab)^{\omega}, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\}\right) \]

Question: Is \(L_{\text{crt}} \) timed regular or not?
The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
The Universality Problem

- **Given:** A TBA \mathcal{A} over alphabet Σ.
- **Question:** Does \mathcal{A} accept all timed words over Σ?

 In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}$.

\[
\Sigma = \{a, b, c\} \quad \mathcal{A}:
\]
The Universality Problem

- **Given:** A TBA \mathcal{A} over alphabet Σ.
- **Question:** Does \mathcal{A} accept all timed words over Σ?

 In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

("The class Π^1_1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:
- Let \mathcal{B} be a Büchi Automaton over Σ.
- \mathcal{B} is universal if and only if $\overline{L(\mathcal{B})} = \emptyset$.
- \mathcal{B}' such that $L(\mathcal{B}') = \overline{L(\mathcal{B})}$ is effectively computable.
- Language emptyness is decidable for Büchi Automata.
Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

Proof Idea:

- Consider a language L_{undec} which consists of the *recurring* computations of a 2-counter machine M.

- Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with

$$L(A) = \overline{L_{\text{undec}}}.$$

- Then A is universal if and only if L_{undec} is empty...

 ...which is the case if and only if M *doesn’t have* a recurring computation.
A **two-counter machine** M

- has two **counters** C, D and
- a finite **program** consisting of n instructions.
- An **instruction** increments or decrements one of the counters, or **jumps**, here even non-deterministically.

A **configuration** of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

A **computation** of M is an infinite consecutive sequence

$$\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.

Once Again: 2-Counter Mach. (Different Flavour)

A **two-counter machine** M

- has two **counters** C, D and
- a finite **program** consisting of n instructions.
- An **instruction** increments or decrements one of the counters, or **jumps**, here even non-deterministically.

A **configuration** of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

A **computation** of M is an infinite consecutive sequence

$$\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.

Step 1: The Language of Recurring Computations

- Let \(M \) be a 2CM with \(n \) instructions.

Wanted: A timed language \(L_{\text{undec}} \) (over some alphabet) representing exactly the recurring computations of \(M \).
(In particular s.t. \(L_{\text{undec}} = \emptyset \) if and only if \(M \) has no recurring computation.)

- Choose \(\Sigma = \{b_1, \ldots, b_n, a_1, a_2\} \) as alphabet.

- We represent a configuration \(\langle i, c, d \rangle \) of \(M \) by the sequence

\[
\underbrace{b_i\ a_1\ \ldots\ a_1}_{c\ \text{times}}\ \underbrace{a_2\ \ldots\ a_2}_{d\ \text{times}} = b_1a_1^c a_2^d
\]
Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2} \ldots$

- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.

- For all $j \in \mathbb{N}_0$,
 - the time of b_{i_j} is j.
 - if $c_{j+1} = c_j$:
 for every a_1 at time t in the interval $[j, j + 1]$ there is an a_1 at time $t + 1$,
 - if $c_{j+1} = c_j + 1$:
 for every a_1 at time t in the interval $[j + 1, j + 2]$, except for the last one, there is an a_1 at time $t - 1$,
 - if $c_{j+1} = c_j - 1$:
 for every a_1 at time t in the interval $[j, j + 1]$, except for the last one, there is an a_1 at time $t + 1$,

And analogously for the a_2's.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = L_{\text{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text{undec}}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_{i_1}a_{c_1}^1a_{d_1}^1b_{i_2}a_{c_2}^1a_{d_2}^1$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$
 is a recurring computation of M.
- the time of b_{i_j} is j,
- if $c_{j+1} = c_j (= c_j + 1, = c_j - 1)$: \ldots

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.
(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.
(iii) The timed word is not recurring, i.e. it has only finitely many b_i.
(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.
Step 2: Construct “Observer” for \(\overline{L_{\text{undec}}} \)

Wanted: A TBA \(\mathcal{A} \) such that \(L(\mathcal{A}) = \overline{L_{\text{undec}}} \), i.e., \(\mathcal{A} \) accepts a timed word \((\sigma, \tau)\) if and only if \((\sigma, \tau) \notin L_{\text{undec}}\).

Approach: What are the reasons for a timed word not to be in \(L_{\text{undec}} \)?

(i) The \(b_i \) at time \(j \in \mathbb{N} \) is missing, or there is a spurious \(b_i \) at time \(t \in]j, j + 1[\).

(ii) The prefix of the timed word with times \(0 \leq t < 1 \) doesn’t encode \(\langle 1, 0, 0 \rangle \).

(iii) The timed word is not recurring, i.e. it has only finitely many \(b_i \).

(iv) The configuration encoded in \([j + 1, j + 2[\) doesn’t faithfully represent the effect of instruction \(b_i \) on the configuration encoded in \([j, j + 1[\).

Plan: Construct a TBA \(\mathcal{A}_0 \) for case (i), a TBA \(\mathcal{A}_{\text{init}} \) for case (ii), a TBA \(\mathcal{A}_{\text{recur}} \) for case (iii), and one TBA \(\mathcal{A}_i \) for each instruction for case (iv).

Then set

\[
\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{\text{init}} \cup \mathcal{A}_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_i
\]
Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.

- It accepts

\[\{ (\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1) \}. \]
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

- A_{recur} accepts words with only finitely many b_i.
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$. “Easy to construct.”
- A_7^2 is

\[
\begin{array}{c}
\text{\begin{tikzpicture}
\node (l0) at (0,0) {ℓ_0};
\node (l1) at (2,0) {ℓ_1};
\node (l2) at (4,0) {ℓ_2};
\node (a1) at (4,1.5) {a_1};
\node (nota1) at (4,-1.5) {$\neg a_1, x = 1$};
\draw (l0) edge[->, above] node {b_7} (l1);
\draw (l1) edge[->, above] node {$x < 1$} (l2);
\draw (l0) edge[loop above] node {$*$} (l0);
\draw (l1) edge[loop above] node {$*$} (l1);
\draw (l2) edge[loop above] node {$*$} (l2);
\end{tikzpicture}}
\end{array}
\]

- A_7^3 accepts words which encode unexpected increment of counter C.
- A_7^4, \ldots, A_7^6 accept words with missing decrement of D.

Aha, And...?
Consequences: Language Inclusion

- **Given:** Two TBAs A_1 and A_2 over alphabet B.
- **Question:** Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

If **language inclusion** was decidable, then we could use it to decide universality of A by checking

$$\mathcal{L}(A_{univ}) \subseteq \mathcal{L}(A)$$

where A_{univ} is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $\mathcal{L}(A) = W$).
- **Question:** Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check
 \[L(A_1) \cap L(A_3) = \emptyset, \]
 that is, whether the design has any non-allowed behaviour.
- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

- If the class of timed regular languages were closed under **complementation**, “the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

![Diagram of a non-complementable TBA](image)

$L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}$

Complement language:

$\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1}\}.$
Beyond Timed Regular
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:
- There are strictly more timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[\{(abc)^\omega, \tau) \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2}) \} \]
What is a PLC?
What’s special about PLC?

- microprocessor, memory, timers
- digital (or analog) I/O ports
- possibly RS 232, fieldbuses, networking
- robust hardware
- reprogrammable
- **standardised programming model** (IEC 61131-3)
Where are PLC employed?

- mostly **process automatisation**
 - production lines
 - packaging lines
 - chemical plants
 - power plants
 - electric motors, pneumatic or hydraulic cylinders
 - ...

- not so much: **product automatisation**, there
 - tailored or OTS controller boards
 - embedded controllers
 - ...
How are PLC programmed?

- PLC have in common that they operate in a cyclic manner:
 - read inputs
 - compute
 - write outputs

- Cyclic operation is repeated until external interruption (such as shutdown or reset).
- Cycle time: typically a few milliseconds. [?]

- Programming for PLC means providing the “compute” part.
- Input/output values are available via designated local variables.
Why study PLC?

- **Note:**
 the discussion here is **not limited** to PLC and IEC 61131-3 languages.

- Any programming language on an operating system with **at least one** real-time clock will do.
 (Where a **real-time clock** is a piece of hardware such that,
 - we can program it to wait for t time units,
 - we can query whether the set time has elapsed,
 - if we program it to wait for t time units, it does so with negligible deviation.)

- And strictly speaking, we don’t even need “full blown” operating systems.

- PLC are just a formalisation on a good level of abstraction:
 - there are inputs **somehow** available as local variables,
 - there are outputs **somehow** available as local variables,
 - **somehow**, inputs are polled and outputs updated atomically,
 - there is **some** interface to a real-time clock.
References