Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- Extended Timed Automata Cont’d
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Are all DC formulae testable?
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata? Idea of the proof?

- Content:
 - An untestable DC formula.
 - Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
 - Why this is unfortunate.
 - Timed regular languages are not everything.
Untestable DC Formulae
Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) A_F exists such that for all networks $N = C(A_1, \ldots, A_n)$ it holds that

\[N \models F \iff C(A_1', \ldots, A_n', A_F) \models \forall \lozenge \neg(A_F \cdot q_{bad}) \]

Otherwise it’s called **untestable**.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.
Whenever we observe a change from A to $\neg A$ at time t_A, the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is \mathcal{A}_F such that, for all networks \mathcal{N}, we have

$$\mathcal{N} \models F \text{ iff } C(\mathcal{A}'_1, \ldots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F \cdot q_{bad})$$

Assume the number of clocks in \mathcal{A}_F is $n \in \mathbb{N}_0$.
Consider the following time points:

- \(t_A := 1 \)
- \(t^i_B := t_A + \frac{2i-1}{2(n+1)} \) for \(i = 1, \ldots, n+1 \)
- \(t^i_C \in]t^i_B + 1 - \frac{1}{4(n+1)}, t_B + 1 + \frac{1}{4(n+1)}[\) for \(i = 1, \ldots, n+1 \)

with \(t^i_C - t^i_B \neq 1 \) for \(1 \leq i \leq n+1 \).
Consider the following time points:

- $t_A := 1$
- $t^i_B := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \ldots, n + 1$
- $t^i_C \in]t^i_B + 1 - \frac{1}{4(n+1)}, t^i_B + 1 + \frac{1}{4(n+1)}[\text{ for } i = 1, \ldots, n + 1$

 with $t^i_C - t^i_B \neq 1$ for $1 \leq i \leq n + 1$.

Example: $n = 3$
Consider the following time points:

- \(t_A := 1 \)
- \(t_B^i := t_A + \frac{2i-1}{2(n+1)} \) for \(i = 1, \ldots, n + 1 \)
- \(t_C^i \in]t_B^i + 1 - \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)}[\) for \(i = 1, \ldots, n + 1 \)

with \(t_C^i - t_B^i \neq 1 \) for \(1 \leq i \leq n + 1 \).

Example: \(n = 3 \)
Example: $n = 3$

- The shown interpretation \mathcal{I} satisfies **assumption** of property.
- It has $n + 1$ candidates to satisfy **commitment**.
- By choice of t^i_C, the commitment is not satisfied; so F not satisfied.
- Because \mathcal{A}_F is a test automaton for F, is has a computation path to q_{bad}.
- Because $n = 3$, \mathcal{A}_F can not save all $n + 1$ time points t^i_B.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2 - t^i_B + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$.
Example: \(n = 3 \)

- Because \(A_F \) is a test automaton for \(F \), it has a computation path to \(q_{bad} \).
- Thus there is \(1 \leq i_0 \leq n \) such that all clocks of \(A_F \) have a valuation which is not in \(2 - t_{i_0}^B + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}) \)
Example: $n = 3$

- Because A_F is a test automaton for F, it has a computation path to q_{bad}.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t_{i_0}^B + \left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)} \right)$
- Modify the computation to \mathcal{I}' such that $t_{i_0}^C := t_{i_0}^B + 1$.
Example: $n = 3$

- Because A_F is a test automaton for F, it has a computation path to q_{bad}.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t_B^{i_0} + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$.
- Modify the computation to I' such that $t_C^{i_0} := t_B^{i_0} + 1$.
- Then $I' \models F$, but A_F reaches q_{bad} via the same path.
Example: $n = 3$

- Because A_F is a test automaton for F, it has a computation path to q_{bad}.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t_{i_0}^B + (\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$.
- Modify the computation to I' such that $t_{i_0}^C := t_{i_0}^B + 1$.
- Then $I' \models F$, but A_F reaches q_{bad} via the same path.
- That is: A_F claims $I' \nolhd F$.

Example: $n = 3$

- Because A_F is a test automaton for F, it has a computation path to q_{bad}.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t_{i_0}^B + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$.
- Modify the computation to \mathcal{I}' such that $t_{i_0}^C := t_{i_0}^B + 1$.
- Then $\mathcal{I}' \models F$, but A_F reaches q_{bad} via the same path.
- That is: A_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. **Contradiction.**
Timed Büchi Automata

[Alur and Dill, 1994]
\[
\xi = \langle \text{off}, 0 \rangle, 0 \xrightarrow{1} \langle \text{off}, 1 \rangle, 1 \\
\quad \xrightarrow{\text{press?}} \langle \text{light}, 0 \rangle, 1 \xrightarrow{3} \langle \text{light}, 3 \rangle, 4 \\
\quad \xrightarrow{\text{press?}} \langle \text{bright}, 3 \rangle, 4 \xrightarrow{\ldots}
\]

\(\xi\) is a \textbf{computation path} and \textbf{run} of \(\mathcal{A}\).
\[\xi = \langle \text{off}, 0 \rangle, 0 \xrightarrow{\text{press?}} \langle \text{light}, 0 \rangle, 1 \xrightarrow{\text{press?}} \langle \text{light}, 3 \rangle, 4 \xrightarrow{\text{press?}} \langle \text{bright}, 3 \rangle, 4 \xrightarrow{\ldots} \]

\(\xi \) is a \textbf{computation path} and \textbf{run} of \(A \).
\(\xi = \langle \text{off}, 0 \rangle, 0 \xrightarrow{\text{press}\,?} \langle \text{light}, 0 \rangle, 1 \xrightarrow{\text{press}\,?} \langle \text{light}, 3 \rangle, 4 \xrightarrow{\text{press}\,?} \langle \text{bright}, 3 \rangle, 4 \xrightarrow{\cdots} \ldots \)

\(\xi \) is a **computation path** and **run** of \(A \).

New: Given a timed word

\((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots \),

does \(A \) **accept** it?

New: acceptance criterion is **visiting accepting state infinitely often**.
Definition. A **time sequence** \(\tau = \tau_1, \tau_2, \ldots \) is an infinite sequence of time values \(\tau_i \in \mathbb{R}_0^+ \), satisfying the following constraints:

(i) **Monotonicity:**
\(\tau \) increases **strictly** monotonically, i.e. \(\tau_i < \tau_{i+1} \) for all \(i \geq 1 \).

(ii) **Progress:** For every \(t \in \mathbb{R}_0^+ \), there is some \(i \geq 1 \) such that \(\tau_i > t \).
Timed Languages

Definition. A *time sequence* $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

(i) **Monotonicity:**
τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \geq 1$.

(ii) **Progress:** For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A *timed word* over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \cdots \in \Sigma^\omega$ is an infinite word over Σ, and
- τ is a time sequence.
Timed Languages

Definition. A **time sequence** \(\tau = \tau_1, \tau_2, \ldots \) is an infinite sequence of time values \(\tau_i \in \mathbb{R}_0^+ \), satisfying the following constraints:

1. **Monotonicity:**
 \(\tau \) increases **strictly** monotonically, i.e. \(\tau_i < \tau_{i+1} \) for all \(i \geq 1 \).
2. **Progress:** For every \(t \in \mathbb{R}_0^+ \), there is some \(i \geq 1 \) such that \(\tau_i > t \).

Definition. A **timed word** over an alphabet \(\Sigma \) is a pair \((\sigma, \tau)\) where

- \(\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega \) is an infinite word over \(\Sigma \), and
- \(\tau \) is a time sequence.

Definition. A **timed language** over an alphabet \(\Sigma \) is a set of timed words over \(\Sigma \).
Example: Timed Language

Timed word over alphabet Σ: a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \ldots$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$L_{crt} = \{((ab)^\omega, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\}$$
Definition. The set $\Phi(X)$ of *clock constraints* over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.
Definition. The set $\Phi(X)$ of **clock constraints** over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A **timed Büchi automaton** (TBA) \mathcal{A} is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

- $F \subseteq S$ is a set of **accepting states**.
Example: TBA

\[A = (\Sigma, S, S_0, X, E, F) \]
\[(s, s', a, \lambda, \delta) \in E \]
(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1}{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2}{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3}{\tau_3} \ldots$$

with $s_i \in S$ and $\nu_i : X \rightarrow \mathbb{R}_0^+$, satisfying the following requirements:
Definition. A run \(r \), denoted by \((\bar{s}, \bar{\nu})\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an infinite sequence of the form

\[
r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1}{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2}{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3}{\tau_3} \ldots
\]

with \(s_i \in S \) and \(\nu_i : X \to \mathbb{R}_0^+ \), satisfying the following requirements:

- **Initiation**: \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution**: for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)\) such that
 - \((\nu_{i-1} + (\tau_i - \tau_{i-1})) \) satisfies \(\delta_i \) and
 - \(\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0] \).
Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an infinite sequence of the form

\[r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1 \tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2 \tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3 \tau_3} \ldots \]

with $s_i \in S$ and $\nu_i : X \rightarrow \mathbb{R}_0^+$, satisfying the following requirements:

- **Initiation:** $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.

- **Consecution:** for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]$.

The set $\inf(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \geq 0$.

(Accepting) TBA Runs
Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1, \tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2, \tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3, \tau_3} \ldots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_0^+$, satisfying the following requirements:

- **Initiation:** $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- **Consecution:** for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]$.

The set $\text{inf}(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \geq 0$.

Definition. A run $r = (\bar{s}, \bar{\nu})$ of a TBA over timed word (σ, τ) is called (an) **accepting** (run) if and only if $\text{inf}(r) \cap F \neq \emptyset$.
Example: (Accepting) Runs

\[
\begin{align*}
r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \ldots & \quad \text{initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \text{ s.t.} \\
(\nu_{i-1} + (\tau_i - \tau_{i-1})) = \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]. & \text{Accepting iff } \inf(r) \cap F \neq \emptyset.
\end{align*}
\]

Timed word: \((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots\)

- Can we construct **any run**? Is it accepting?
- Can we construct a **non-run**?
- Can we construct a **(non-)accepting run**?

\[
\begin{array}{c}
s_1 \\
\downarrow \quad b \\
s_0 \\
\downarrow \quad a \\
s_2 \\
\downarrow \quad b, x < 2 \\
s_3 \\
\downarrow \quad a, x := 0 \\
\end{array}
\]

\[
\begin{array}{c}
s_1 \\
\downarrow \quad a \\
s_0 \\
\downarrow \quad x := 0 \\
s_2 \\
\downarrow \quad a, x := 0 \\
s_3 \\
\end{array}
\]
The Language of a TBA

Definition. For a TBA \(\mathcal{A} \), the **language** \(L(\mathcal{A}) \) of timed words it accepts is defined to be the set

\[
\left\{ (\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau) \right\}.
\]

For short: \(L(\mathcal{A}) \) is the **language of** \(\mathcal{A} \).

Definition. A timed language \(L \) is a **timed regular language** if and only if \(L = L(\mathcal{A}) \) for **some** TBA \(\mathcal{A} \).
Example: Language of a TBA

\[L(A) = \{ (\sigma, \tau) | A \text{ has an accepting run over } (\sigma, \tau) \}. \]

Claim:

\[L(A) = L_{\text{crt}} = \{ ((ab)^{\omega}, \tau) | \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2) \} \]

Question: Is \(L_{\text{crt}} \) timed regular or not?
The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
The Universality Problem

- **Given:** A TBA \mathcal{A} over alphabet Σ.
- **Question:** Does \mathcal{A} accept all timed words over Σ?

 In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}$.
The Universality Problem

- **Given:** A TBA A over alphabet Σ.
- **Question:** Does A accept all timed words over Σ?

 In other words: Is $L(A) = \{ (\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence} \}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1-hard.

(“The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)
The Universality Problem

- **Given**: A TBA \mathcal{A} over alphabet Σ.
- **Question**: Does \mathcal{A} accept all timed words over Σ?

 In other words: Is $L(\mathcal{A}) = \{ (\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence} \}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

(“The class Π^1_1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let \mathcal{B} be a Büchi Automaton over Σ.
- \mathcal{B} is universal if and only if $\overline{L(\mathcal{B})} = \emptyset$.
- \mathcal{B}' such that $L(\mathcal{B}') = \overline{L(\mathcal{B})}$ is effectively computable.
- Language emptyness is decidable for Büchi Automata.
Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_{1}^{1}-hard.

Proof Idea:

- Consider a language L_{undec} which consists of the recurring computations of a 2-counter machine M.

- Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with

$$L(A) = \overline{L_{\text{undec}}}.$$

- Then A is universal if and only if L_{undec} is empty...

 ...which is the case if and only if M doesn’t have a recurring computation.
A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

A configuration of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.
Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine \(M \)

- has two counters \(C, D \) and
- a finite program consisting of \(n \) instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

- A configuration of \(M \) is a triple \(\langle i, c, d \rangle \):

 program counter \(i \in \{1, \ldots, n\} \), values \(c, d \in \mathbb{N}_0 \) of \(C \) and \(D \).

- A computation of \(M \) is an infinite consecutive sequence

 \[\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots \]

 that is, \(\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle \) is a result executing instruction \(i_j \) at \(\langle i_j, c_j, d_j \rangle \).
A **two-counter machine** M

- has two **counters** C, D and
- a finite **program** consisting of n instructions.
- An **instruction** **increments or decrements** one of the counters, or **jumps**, here even non-deterministically.

- A **configuration** of M is a triple $\langle i, c, d \rangle$:
 - program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

- A **computation** of M is an infinite consecutive sequence
 \[
 \langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots
 \]
 that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.
Step 1: The Language of Recurring Computations

- Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.
(In particular s.t. $L_{\text{undec}} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.

- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

 $$b_i \underbrace{a_1 \ldots a_1}_{c \text{ times}} \underbrace{a_2 \ldots a_2}_{d \text{ times}} = b_1 a_1^c a_2^d$$
Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2} \ldots$

- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.
Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_{c_1}^1a_{d_1}^1b_{i_2}a_{c_2}^2a_{d_2}^2 \ldots$

- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.

- For all $j \in \mathbb{N}_0$,
 - the time of b_{i_j} is j.
 - if $c_{j+1} = c_j$:
 for every a_1 at time t in the interval $[j, j + 1]$
 there is an a_1 at time $t + 1$,
 - if $c_{j+1} = c_j + 1$:
 for every a_1 at time t in the interval $[j + 1, j + 2]$, except for the last one, there is an a_1 at time $t - 1$,
 - if $c_{j+1} = c_j - 1$:
 for every a_1 at time t in the interval $[j, j + 1]$, except for the last one, there is an a_1 at time $t + 1$,

And analogously for the a_2’s.
Step 2: Construct “Observer” for $\overline{L_{\text{undec}}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{\text{undec}}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text{undec}}$.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{\text{undec}}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text{undec}}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_{i_1} a_{1}^{c_1} a_{2}^{d_1} b_{i_2} a_{1}^{c_2} a_{2}^{d_2}$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.
- the time of b_{i_j} is j,
- if $c_{j+1} = c_j$ ($= c_j + 1$, $= c_j - 1$): \ldots

1. The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.
2. The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.
3. The timed word is not recurring, i.e. it has only finitely many b_i.
4. The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that $L(A) = \overline{L_{undec}}$, i.e., A accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec}?

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv). Then set

$$A = A_0 \cup A_{init} \cup A_{recur} \cup \bigcup_{1 \leq i \leq n} A_i$$
(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[.$

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.

- It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

- A_{recur} accepts words with only finitely many b_i.
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$. “Easy to construct.”
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$. “Easy to construct.”
- A_7^2 is

\[
\begin{align*}
&l_0 \quad \xrightarrow{b_7 \ x := 0} \quad l_1 \quad \xrightarrow{a_1 \ x < 1} \quad l_2 \\
&\star \quad \quad \quad \star \quad \quad \quad \star
\end{align*}
\]

\[
\begin{align*}
&l_0 \quad \xrightarrow{b_7 \ x := 0} \quad l_1 \quad \xrightarrow{a_1 \ x < 1} \quad l_2 \\
&\neg a_1, x = 1 \quad \quad \quad \quad x = 1
\end{align*}
\]
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j+1, j+2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j+1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j+1$. “Easy to construct.”
- A_7^2 is

\[
\begin{align*}
\ell_0 & \quad x := 0 \\
\ell_1 & \quad x < 1 \\
\ell_2 & \quad \neg a_1, x = 1
\end{align*}
\]

- A_7^3 accepts words which encode unexpected increment of counter C.
- A_7^4, \ldots, A_7^6 accept words with missing decrement of D.

Aha, And...?
Consequences: Language Inclusion

- **Given:** Two TBAs A_1 and A_2 over alphabet B.
- **Question:** Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
Consequences: Language Inclusion

- **Given**: Two TBAs A_1 and A_2 over alphabet B.
- **Question**: Is $L(A_1) \subseteq L(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

- If **language inclusion** was decidable, then we could use it to decide universality of A by checking

$$L(A_{univ}) \subseteq L(A)$$

where A_{univ} is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

Possible applications of a decision procedure:
- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check

$$L(A_1) \cap L(A_3) = \emptyset,$$

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata **is decidable**.
 (Proof by construction of region automaton [Alur and Dill, 1994].)
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?
Consequences: Complementation

- **Given:** A timed regular language W over B
 (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

- If the class of timed regular languages were closed under **complementation**, “the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem.” [Alur and Dill, 1994]
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

If the class of timed regular languages were closed under **complementation**, “the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

\[
L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}
\]

Complement language:

\[
\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1\}.
\]
Beyond Timed Regular
With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:

- There are strictly more timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[\{(abc)^\omega, \tau \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\} \]
References