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Real-Time Systems

Lecture 14: Regions and Zones

2014-07-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
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Last Lecture:

• Location reachability decidability

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a zone? In contrast to a region?

• Motivation for having zones?

• What’s a DBM? Who needs to know DBMs?

• Content:

• Zones

• Difference Bound Matrices



Zones

(Presentation following [Fränzle, 2007])

–
1
4
–
2
0
1
4
-0
7
-1
7
–
m
a
in

–

3/18

Recall: Number of Regions
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Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal constant
for each x ∈ X, and c = max{cx | x ∈ X}. Then

(2c+ 2)|X| · (4c+ 3)
1

2
|X|·(|X|−1)

is an upper bound on the number of regions.

• In the desk lamp controller,

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

many regions are reachable in R(L), but we convinced ourselves that it’s
actually only important whether ν(x) ∈ [0, 3] or ν(x) ∈ (3,∞).

So: seems there are even equivalence classes of undistinguishable regions.



Wanted: Zones instead of Regions
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• In R(L) we have transitions:

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , {0}〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , (0, 1)〉,

• . . . ,

• 〈 light , {0}〉
press?
−−−−→ 〈 bright , (2, 3)〉, 〈 light , {0}〉

press?
−−−−→ 〈 bright , {3}〉

• Which seems to be a complicated way to write just:

〈 light , {0}〉
press?
−−−−→ 〈 bright , [0, 3]〉

• Can’t we constructively abstract L to:

〈 off , {0}〉 〈 light , {0}〉 〈 bright , [0, 3]〉

〈 off , (3,∞)〉 〈 off , [0,∞)〉

press? press?

press?

press?

press?

press?

What is a Zone?
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Definition. A (clock) zone is a set z ⊆ (X → Time) of valuations
of clocks X such that there exists ϕ ∈ Φ(X) with

ν ∈ z if and only if ν |= ϕ.

Example:

0

1

2

0 1 2 3
x

y

z

is a clock zone by

ϕ = (x ≤ 2) ∧ (x > 1) ∧ (y ≥ 1) ∧ (y < 2) ∧ (x− y ≥ 0)

• Note: Each clock constraint ϕ is a symbolic representation of a zone.

• But: There’s no one-on-one correspondence between clock constraints and zones.
The zone z = ∅ corresponds to (x > 1 ∧ x < 1), (x > 2 ∧ x < 2), . . .



More Examples: Zone or Not?
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•

0

1

2

0 1 2 3
x

y

•

0

1

2

0 1 2 3
x

y

•

0

1

2

0 1 2 3
x

y

Zone-based Reachability
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Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Assume a function

Poste : (L× Zones) → (L× Zones)

such that Poste(〈ℓ, z〉) yields the configuration 〈ℓ′, z′〉 such that

• zone z′ denotes exactly those clock valuations ν ′

• which are reachable from a configuration 〈ℓ, ν〉, ν ∈ z,

• by taking edge e = (ℓ, α, ϕ, Y, ℓ′) ∈ E.



Zone-based Reachability
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Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Assume a function

Poste : (L× Zones) → (L× Zones)

such that Poste(〈ℓ, z〉) yields the configuration 〈ℓ′, z′〉 such that

• zone z′ denotes exactly those clock valuations ν ′

• which are reachable from a configuration 〈ℓ, ν〉, ν ∈ z,

• by taking edge e = (ℓ, α, ϕ, Y, ℓ′) ∈ E.

Then ℓ ∈ L is reachable in A if and only if

Posten(. . . (Poste1(〈ℓini, zini〉) . . . )) = 〈ℓ, z〉

for some e1, . . . , en ∈ E and some z.

Zone-based Reachability: In Other Words
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Given:

• off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

and initial configuration 〈 off , {0}〉

Wanted: A procedure to compute
the set

• 〈 light , {0}〉

• 〈 bright , [0, 3]〉

• 〈 off , [0,∞)〉

• Set R := {〈ℓini , zini〉} ⊂ L× Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and

• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉) is not
already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such 〈ℓ, z〉 ∈ R and
e ∈ E are found.



Stocktaking: What’s Missing?
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• Set R := {〈ℓini , zini〉} ⊂ L× Zones

• Repeat

• pick

• a pair 〈ℓ, z〉 from R and

• an edge e ∈ E with source ℓ

such that Poste(〈ℓ, z〉) is not already subsumed by R

• add Poste(〈ℓ, z〉) to R

until no more such 〈ℓ, z〉 ∈ R and e ∈ E are found.

Missing:

• Algorithm to effectively compute Poste(〈ℓ, z〉)
for given configuration 〈ℓ, z〉 ∈ L× Zones and edge e ∈ E.

• Decision procedure for whether
configuration 〈ℓ′, z′〉 is subsumed by a given subset of L× Zones.

Note: Algorithm in general terminates only if we apply widening to zones,
that is, roughly, to take maximal constants cx into account (not in lecture).

What is a Good “Post”?
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• If z is given by a constraint ϕ ∈ Φ(X), then the zone component z′ of
Poste(ℓ, z) = 〈ℓ′, z′〉 should also be a constraint from Φ(X).
(Because sets of clock valuations are soo unhandily. . . )

Good news: the following operations can be carried out by manipulating ϕ.

• The elapse time operation:

↑: Φ(X) → Φ(X)

Given a constraint ϕ, the constraint ↑ (ϕ), or ϕ ↑ in postfix notation, is supposed
to denote the set of clock valuations

{ν + t | ν |= ϕ, t ∈ Time}.

In other symbols: we want

J↑ (ϕ)K = Jϕ ↑K = {ν + t | ν ∈ JϕK, t ∈ Time}.

To this end: remove all upper bounds x ≤ c, x < c from ϕ and add diagonals.



Good News Cont’d
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Good news: the following operations can be carried out by manipulating ϕ.

• elapse time ϕ ↑ with

Jϕ ↑K = {ν + t | ν |= ϕ, t ∈ Time}

• zone intersection ϕ1 ∧ ϕ2 with

Jϕ1 ∧ ϕ2K = {ν | ν |= ϕ1 and ν |= ϕ2}

• clock hiding ∃x.ϕ with

J∃x.ϕK = {ν | there is t ∈ Time such that ν[x := t] |= ϕ}

• clock reset ϕ[x := 0] with

Jϕ[x := 0]K = Jx = 0 ∧ ∃x.ϕK

This is Good News...

–
1
4
–
2
0
1
4
-0
7
-1
7
–
S
zo
n
es

–

13/18

...because given 〈ℓ, z〉 = 〈ℓ, ϕ0〉 and e = (ℓ, α, ϕ, {y1, . . . , yn}, ℓ
′) ∈ E we have

Poste(〈ℓ, z〉) = 〈ℓ′, ϕ5〉

where

• ϕ1 = ϕ0 ↑

let time elapse starting from ϕ0: ϕ1 represents all valuations reachable by waiting

in ℓ for an arbitrary amount of time.

• ϕ2 = ϕ1 ∧ I(ℓ)

intersect with invariant of ℓ: ϕ2 represents the reachable good valuations.

• ϕ3 = ϕ2 ∧ ϕ

intersect with guard: ϕ3 are the reachable good valuations where e is enabled.

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0]

reset clocks: ϕ4 are all possible outcomes of taking e from ϕ3

• ϕ5 = ϕ4 ∧ I(ℓ
′)

intersect with invariant of ℓ′: ϕ5 are the good outcomes of taking e from ϕ3



Example
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ℓ

y < 3
ℓ′

x > 1

x ≤ 2

y := 0• ϕ1 = ϕ0 ↑ let time elapse.
• ϕ2 = ϕ1 ∧ I(ℓ) intersect with invariant of ℓ

• ϕ3 = ϕ2 ∧ ϕ intersect with guard

• ϕ4 = ϕ3[y1 := 0] . . . [yn := 0] reset clocks

• ϕ5 = ϕ4 ∧ I(ℓ
′) intersect with invariant of ℓ′

0

1

2

0 1 2 3
x

y

ϕ0

0

1

2

0 1 2 3
x

y

ϕ1

0

1

2

0 1 2 3
x

y

ϕ2

0

1

2

0 1 2 3
x

y

ϕ3

0

1

2

0 1 2 3
x

y

ϕ4

0

1

2

0 1 2 3
x

y

ϕ5

Difference Bound Matrices
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• Given a finite set of clocks X, a DBM over X is a mapping

M : (X ∪̇ {x0} ×X ∪̇ {x0}) → ({<,≤} ×Z ∪ {(<,∞)})

• M(x, y) = (∼, c) encodes the conjunct x− y ∼ c (x and y can be x0).



Difference Bound Matrices
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• Given a finite set of clocks X, a DBM over X is a mapping

M : (X ∪̇ {x0} ×X ∪̇ {x0}) → ({<,≤} ×Z ∪ {(<,∞)})

• M(x, y) = (∼, c) encodes the conjunct x− y ∼ c (x and y can be x0).

• If M and N are DBM encoding ϕ1 and ϕ2 (representing zones z1 and z2),
then we can efficiently compute M ↑, M ∧N , M [x := 0] such that

• all three are again DBM,

• M ↑ encodes ϕ1 ↑,

• M ∧N encodes ϕ1 ∧ ϕ2, and

• M [x := 0] encodes ϕ1[x := 0].

• And there is a canonical form of DBM — canonisation of DBM can be
done in cubic time (Floyd-Warshall algorithm).

• Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.

Pros and cons

–
1
4
–
2
0
1
4
-0
7
-1
7
–
S
zo
n
es

–

16/18

• Zone-based reachability analysis usually is explicit wrt. discrete locations:

• maintains a list of location/zone pairs or

• maintains a list of location/DBM pairs

• confined wrt. size of discrete state space

• avoids blowup by number of clocks and size of clock constraints
through symbolic representation of clocks

• Region-based analysis provides a finite-state abstraction, amenable to
finite-state symbolic MC

• less dependent on size of discrete state space

• exponential in number of clocks
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Last Lecture:

• Decidability of the location reachability problem:

• region automaton & zones

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• By what are TA extended? Why is that useful?

• What’s an urgent/committed location? What’s the difference?

• What’s an urgent channel?

• Where has the notion of “input action” and “output action” correspondences in
the formal semantics?

• Content:

• Extended TA:

• Data-Variables, Structuring Facilities, Restriction of Non-Determinism

• The Logic of Uppaal

Extended Timed Automata
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Example (Partly Already Seen in Uppaal Demo)
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Templates:
Extensions:

• Data Variables
(Expressions,
Constraints, Updates)

• Structuring

• Urgent/Committed
Location,
Urgent Channel

• L: off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• U :

U

v := 0

v = 1

v = 0

y := 0
y < 2

press!

v := 1

press!

y > 3

press!

System:

L U

press? press!
x

y

v
chan press

Data-Variables
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• When modelling controllers as timed automata, it is sometimes desirable to
have (local and shared) variables.
E.g. count number of open doors, or intermediate positions of gas valve.



Data-Variables
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• When modelling controllers as timed automata, it is sometimes desirable to
have (local and shared) variables.
E.g. count number of open doors, or intermediate positions of gas valve.

• Adding variables with finite range (possibly grouped into finite arrays) to
any finite-state automata concept is straighforward:

• If we have control locations L0 = {ℓ1, . . . , ℓn},

• and want to model, e.g., the valve range as a variable v with D(v) = {0, . . . , 2},

• then just use L = L0 ×D(v) as control locations, i.e. encode the current value

of v in the control location, and consider updates of v in the
λ
−→.

L is still finite, so we still have a proper TA.

• But: writing
λ
−→ is tedious.

• So: have variables as “first class citizens” and let compilers do the work.

• Interestingly, many examples in the literature live without variables: the
more abstract the model is, i.e., the fewer information it keeps track of
(e.g. in data variables), the easier the verification task.

Data Variables and Expressions
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• Let (v, w ∈) V be a set of (integer) variables.

(ψint ∈) Ψ(V ): integer expressions over V using func. symb. +,−, . . .

(ϕint ∈) Φ(V ): integer (or data) constraints over V
using integer expressions, predicate symbols =, <,≤, . . . , and boolean
logical connectives.

• Let (x, y ∈) X be a set of clocks.

(ϕ ∈) Φ(X,V ): (extended) guards, defined by

ϕ ::= ϕclk | ϕint | ϕ1 ∧ ϕ2

where ϕclk ∈ Φ(X) is a simple clock constraint (as defined before)
and ϕint ∈ Φ(V ) an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(a) x < y ∧ v > 2, (b) x < y ∨ v > 2, (c) v < 1 ∨ v > 2, (d) x < v



Modification or Reset Operation
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• New: a modification or reset (operation) is

x := 0, x ∈ X,

or
v := ψint , v ∈ V, ψint ∈ Ψ(V ).

• By R(X,V ) we denote the set of all resets.

• By ~r we denote a finite list 〈r1, . . . , rn〉, n ∈ N0,
of reset operations ri ∈ R(X,V );
〈〉 is the empty list.

• By R(X,V )∗ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?

(a) x := y, (b) x := v, (c) v := x, (d) v := w, (e) v := 0

Structuring Facilities
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global decl.: clocks, variables, channels, constants

A1 A2 A3

A4
A5

local

decl.

b!
c! c?

a!
d?

a?
d! b?

b? b?

broadcast chan b

chan c
chan a

chan d

• Global declarations of of clocks, data variables, channels, and constants.

• Binary and broadcast channels: chan c and broadcast chan b.

• Templates of timed automata.

• Instantiation of templates (instances are called process).

• System definition: list of processes.



Restricting Non-determinism
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• Urgent locations — enforce local immediate progress.

U

• Committed locations — enforce atomic immediate progress.

C

• Urgent channels — enforce cooperative immediate progress.

urgent chan press;

Urgent Locations: Only an Abbreviation...
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Replace

ℓ

urgent
with ℓ

ϕ ϕ ∧ z = 0

z := 0

z := 0

where z is a fresh clock:

• reset z on all in-going egdes,

• add z = 0 to invariant.

Question: How many fresh clocks do we need in the worst case for a network
of N extended timed automata?



Extended Timed Automata
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Definition 4.39. An extended timed automaton is a structure

Ae = (L,C,B, U,X, V, I, E, ℓini)

where L,B,X, I, ℓini are as in Def. 4.3, except that location invari-
ants in I are downward closed, and where

• C ⊆ L: committed locations,

• U ⊆ B: urgent channels,

• V : a set of data variables,

• E ⊆ L×B!?×Φ(X,V )×R(X,V )∗×L: a set of directed edges
such that

(ℓ, α, ϕ, ~r, ℓ′) ∈ E ∧ chan(α) ∈ U =⇒ ϕ = true.

Edges (ℓ, α, ϕ, ~r, ℓ′) from location ℓ to ℓ′ are labelled with an
action α, a guard ϕ, and a list ~r of reset operations.
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