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Last Lecture:

• DC Syntax and Semantics: Abbreviations (“almost everywhere”)

• Satisfiable/Realisable/Valid (from 0)

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What are obstacles on proving a design correct in the real-world, and how to
overcome them?

• Facts: decidability properties.

• What’s the idea of the considered (un)decidability proofs?

• Content:

• Semantical Correctness Proof

• (Un-)Decidable problems of DC variants in discrete and continuous time
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(i) Choose a collection of observables ‘Obs’.

(ii) Provide the requirement/specification ‘Spec’
as a conjunction of DC formulae (over ‘Obs’).

(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).

(iv) We say ‘Ctrl’ is correct (wrt. ‘Spec’) iff

|=0 Ctrl =⇒ Spec.
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gas valve

flame sensor

ignition

(i) Choose observables:

• two boolean observables G and F

(i.e. Obs = {G,F}, D(G) = D(F ) = {0, 1})

• G = 1: gas valve open (output)

• F = 1: have flame (input)

• define L := G ∧ ¬F (leakage)

(ii) Provide the requirement:

Req : ⇐⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
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(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

• Des-1 : ⇐⇒ �(⌈L⌉ =⇒ ℓ ≤ 1)

• Des-2 : ⇐⇒ �(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)

(iv) Prove correctness:

• We want (or do we want |=0...?):

|= (Des-1 ∧ Des-2 =⇒ Req) (Thm. 2.16)

• We do show
|= Req-1 =⇒ Req (Lem. 2.17)

with the simplified requirement

Req-1 := �(ℓ ≤ 30 =⇒ ∫ L ≤ 1),
• and we show

|= (Des-1 ∧ Des-2) =⇒ Req-1. (Lem. 2.19)
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.

• Let LI be any interpretation of L, and [b, e] an interval with e− b ≥ 60.
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.

• Let LI be any interpretation of L, and [b, e] an interval with e− b ≥ 60.

• Show “20 · ∫ L ≤ ℓ”, i.e.

IJ20 · ∫ L ≤ ℓK(V, [b, e]) = tt

i.e.

2̂0 ·̂

∫ e

b

LI(t) dt ≤̂ (e− b)
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|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)

• Set n := ⌈ e−b
30

⌉, i.e. n ∈ N with n− 1 < e−b
30

≤ n, and split the interval

b

b+ 30 b+ 60 b+ 30(n− 2)b+ 30(n− 1)

e

b+ 30n
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Theorem 2.18.

For all state assertions P and all real numbers r1, r2 ∈ R,

(i) |= ∫ P ≤ ℓ,

(ii) |= (∫ P = r1) ; (∫ P = r2) =⇒ ∫ P = r1 + r2,

(iii) |= ⌈¬P ⌉ =⇒ ∫ P = 0,

(iv) |= ⌈⌉ =⇒ ∫ P = 0.
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Claim:

|= (�(⌈L⌉ =⇒ ℓ ≤ 1)
︸ ︷︷ ︸

Des-1

∧�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)
︸ ︷︷ ︸

Des-2

) =⇒ �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

Proof:
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Claim:

(i) |= ∫ P ≤ ℓ, (iv) |= ⌈⌉ =⇒ ∫ P = 0
(ii) |= (∫ P = r1) ; (∫ P = r2)

=⇒ ∫ P = r1 + r2,
(iii) |= ⌈¬P ⌉ =⇒ ∫ P = 0,

|= (�(⌈L⌉ =⇒ ℓ ≤ 1)
︸ ︷︷ ︸

Des-1

∧�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)
︸ ︷︷ ︸

Des-2

) =⇒ �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

Proof:
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(i) Choose a collection of observables ‘Obs’.

(ii) Provide specification ‘Spec’ (conjunction of DC formulae (over ‘Obs’)).

(iii) Provide a description ‘Ctrl’ of the controller (DC formula (over ‘Obs’)).

(iv) Prove ‘Ctrl’ is correct (wrt. ‘Spec’).

That looks too simple to be practical. Typical obstacles:

(i) It may be impossible to realise ‘Spec’
if it doesn’t consider properties of the plant.

(ii) There are typically intermediate design levels between ‘Spec’ and ‘Ctrl’.

(iii) ‘Spec’ and ‘Ctrl’ may use different observables.

(iv) Proving validity of the implication is not trivial.
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)

• We shall specify such assumptions as a DC formula ‘Asm’ on the input

observables and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity
(from 0) of

Ctrl ∧ Asm =⇒ Spec
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)

• We shall specify such assumptions as a DC formula ‘Asm’ on the input

observables and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity
(from 0) of

Ctrl ∧ Asm =⇒ Spec

• Shall we care whether ‘Asm’ is satisfiable?
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• A top-down development approach may involve

• Spec — specification/requirements

• Des — design

• Ctrl — implementation

• Then correctness is established by proving validity of

Ctrl =⇒ Des (1)

and
Des =⇒ Spec (2)

(then concluding Ctrl =⇒ Spec by transitivity)

• Any preference on the order?
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• Assume, ‘Spec’ uses more abstract observables ObsA and ‘Ctrl’ more
concrete ones ObsC .

• For instance:

• in ObsA: only consider gas valve open or closed (D(G) = {0, 1})

• in ObsC : may control two valves and care for intermediate positions, for
instance, to react to different heating requests
(D(G1) = {0, 1, 2, 3},D(G2) = {0, 1, 2, 3})
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• Assume, ‘Spec’ uses more abstract observables ObsA and ‘Ctrl’ more
concrete ones ObsC .

• For instance:

• in ObsA: only consider gas valve open or closed (D(G) = {0, 1})

• in ObsC : may control two valves and care for intermediate positions, for
instance, to react to different heating requests
(D(G1) = {0, 1, 2, 3},D(G2) = {0, 1, 2, 3})

• To prove correctness, we need information how the observables are related
— an invariant which links the data values of ObsA and ObsC .

• If we’re given the linking invariant as a DC formula, say ‘LinkC,A’, then
proving correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving validity (from
0) of

Ctrl ∧ LinkC,A =⇒ Spec.

• For instance,
LinkC,A = ⌈G ⇐⇒ (G1 +G2 > 0)⌉
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• by hand on the basis of DC semantics,

• maybe supported by proof rules,

• sometimes a general theorem may fit (e.g. cycle times of PLC automata),

• algorithms as in Uppaal.
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• Recall:

Given assumptions as a DC formula ‘Asm’ on the input observables,
verifying correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving

|=0 Ctrl ∧ Asm =⇒ Spec (1)

• If ‘Asm’ is not satisfiable. . .
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• Recall:

Given assumptions as a DC formula ‘Asm’ on the input observables,
verifying correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving

|=0 Ctrl ∧ Asm =⇒ Spec (1)

• If ‘Asm’ is not satisfiable then (1) is trivially valid,
and thus each ‘Ctrl’ correct wrt. ‘Spec’.

• So: strong interest in assessing the satisfiability of DC formulae.

• Question: is there an automatic procedure to help us out?
(a.k.a.: is it decidable whether a given DC formula is satisfiable?)

• More interesting for ‘Spec’:
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• Recall:

Given assumptions as a DC formula ‘Asm’ on the input observables,
verifying correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving

|=0 Ctrl ∧ Asm =⇒ Spec (1)

• If ‘Asm’ is not satisfiable then (1) is trivially valid,
and thus each ‘Ctrl’ correct wrt. ‘Spec’.

• So: strong interest in assessing the satisfiability of DC formulae.

• Question: is there an automatic procedure to help us out?
(a.k.a.: is it decidable whether a given DC formula is satisfiable?)

• More interesting for ‘Spec’: is it realisable (from 0)?

• Question: is it decidable whether a given DC formula is realisable?
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Fragment Discrete Time Continous Time

RDC decidable decidable

RDC + ℓ = r decidable for r ∈ N undecidable for r ∈ R
+

RDC + ∫ P1 = ∫ P2 undecidable undecidable

RDC + ℓ = x, ∀x undecidable undecidable

DC



RDC in Discrete Time

–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

22/35



Restricted DC (RDC)
–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
is
c
–

23/35

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2

where P is a state assertion, but with boolean observables only.

Note:

• No global variables, thus don’t need V.

•
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• An interpretation I is called discrete time interpretation if and only if,
for each state variable X,

XI : Time → D(X)

with

• Time = R
+
0 ,

• all discontinuities are in N0.
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• An interpretation I is called discrete time interpretation if and only if,
for each state variable X,

XI : Time → D(X)

with

• Time = R
+
0 ,

• all discontinuities are in N0.

• An interval [b, e] ⊂ Intv is called discrete if and only if b, e ∈ N0.
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• An interpretation I is called discrete time interpretation if and only if,
for each state variable X,

XI : Time → D(X)

with

• Time = R
+
0 ,

• all discontinuities are in N0.

• An interval [b, e] ⊂ Intv is called discrete if and only if b, e ∈ N0.

• We say (for a discrete time interpretation I and a discrete interval [b, e])

I, [b, e] |= F1 ; F2

if and only if there exists m ∈ [b, e] ∩N0 such that

I, [b,m] |= F1 and I, [m, e] |= F2
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• Let P be a state assertion.

Continuous Time Discrete Time

|=? (⌈P ⌉ ; ⌈P ⌉)

=⇒ ⌈P ⌉

|=? ⌈P ⌉ =⇒

(⌈P ⌉ ; ⌈P ⌉)
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• Let P be a state assertion.

Continuous Time Discrete Time

|=? (⌈P ⌉ ; ⌈P ⌉)
✔ ✔

=⇒ ⌈P ⌉

|=? ⌈P ⌉ =⇒
✔ ✘

(⌈P ⌉ ; ⌈P ⌉)

• In particular: ℓ = 1 ⇐⇒ (⌈1⌉ ∧ ¬(⌈1⌉ ; ⌈1⌉)) (in discrete time).
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• ℓ = 1 ⇐⇒ ⌈1⌉ ∧ ¬(⌈1⌉ ; ⌈1⌉)

• ℓ = 0 ⇐⇒ ¬⌈1⌉

• true ⇐⇒ ℓ = 0 ∨ ¬(ℓ = 0)

• ∫ P = 0 ⇐⇒ ⌈¬P ⌉ ∨ ℓ = 0

• ∫ P = 1 ⇐⇒ (∫ P = 0) ; (⌈P ⌉ ∧ ℓ = 1) ; (∫ P = 0)

• ∫ P = k + 1 ⇐⇒ (∫ P = k) ; (∫ P = 1)

• ∫ P ≥ k ⇐⇒ (∫ P = k) ; true

• ∫ P > k ⇐⇒ ∫ P ≥ k + 1

• ∫ P ≤ k ⇐⇒ ¬(∫ P > k)

• ∫ P < k ⇐⇒ ∫ P ≤ k − 1

where k ∈ N.



Decidability of Satisfiability/Realisability from 0
–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
is
c
–

27/35

Theorem 3.6.

The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.
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• give a procedure to construct, given a formula F , a regular language L(F )
such that

I, [0, n] |= F if and only if w ∈ L(F )

where word w describes I on [0, n]
(suitability of the procedure: Lemma 3.4)

• then F is satisfiable in discrete time if and only if L(F ) is not empty
(Lemma 3.5)

• Theorem 3.6 follows because

• L(F ) can effectively be constructed,

• the emptyness problem is decidable for regular languages.
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• Idea:

• alphabet Σ(F ) consists of basic conjuncts of the state variables in F ,

• a letter corresponds to an interpretation on an interval of length 1,

• a word of length n describes an interpretation on interval [0, n].
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• Idea:

• alphabet Σ(F ) consists of basic conjuncts of the state variables in F ,

• a letter corresponds to an interpretation on an interval of length 1,

• a word of length n describes an interpretation on interval [0, n].

• Example: Assume F contains exactly state variables X,Y, Z, then

Σ(F ) = {X ∧ Y ∧ Z,X ∧ Y ∧ ¬Z,X ∧ ¬Y ∧ Z,X ∧ ¬Y ∧ ¬Z,

¬X ∧ Y ∧ Z,¬X ∧ Y ∧ ¬Z,¬X ∧ ¬Y ∧ Z,¬X ∧ ¬Y ∧ ¬Z}.

Time

1

0
XI

1

0
YI

1

0
ZI

0 1 2 3 4

w = (¬X ∧ ¬Y ∧ ¬Z)

·(X ∧ ¬Y ∧ ¬Z)

·(X ∧ Y ∧ ¬Z)

·(X ∧ Y ∧ Z) ∈ Σ(F )∗
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Definition 3.2. A word w = a1 . . . an ∈ Σ(F )∗ with n ≥ 0 de-

scribes a discrete interpretation I on [0, n] if and only if

∀ j ∈ {1, . . . , n} ∀ t ∈ ]j − 1, j[ : IJajK(t) = 1.

For n = 0 we put w = ε.

• Each state assertion P can be transformed into an equivalent disjunctive
normal form

∨m
i=1

ai with ai ∈ Σ(F ).

• Set DNF (P ) := {a1, . . . , am} (⊆ Σ(F )).

• Define L(F ) inductively:

L(⌈P ⌉) = DNF (P )+,

L(¬F1) = Σ(F )∗ \ L(F1),

L(F1 ∨ F2) = L(F1) ∪ L(F2),

L(F1 ; F2) = L(F1) · L(F2).
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Lemma 3.4. For all RDC formulae F , discrete interpretations I,
n ≥ 0, and all words w ∈ Σ(F )∗ which describe I on [0, n],

I, [0, n] |= F if and only if w ∈ L(F ).
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Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

• kern(L) contains all words of L whose prefixes are again in L.

• If L is regular, then kern(L) is also regular.

• kern(L(F )) can effectively be constructed.

• We have

Lemma 3.8. For all RDC formulae F , F is realisable from 0 in
discrete time if and only if kern(L(F )) is infinite.

• Infinity of regular languages is decidable.
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