Real-Time Systems

Lecture 03: Duration Calculus I

2014-05-08

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Duration Calculus: Preview

(Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)

 $\bullet \ \ \mathsf{chop} - \mathsf{Example} \colon (\lceil \neg I \rceil \, ; \lceil I \rceil \, ; \lceil \neg I \rceil) \implies \ell \geq 1$

(iii) **Te**

(iii) Sta

 $f,g, \quad \text{true}, false, =, <, >, \leq, \geq,$

X,Y,Z, d

 $P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$ $\theta := x \mid \ell \mid f(\theta_1, \dots, \theta_n)$

(i) Symbols

(iv) For

(v) Abbreviations:

 $F ::= p(\theta_1, \dots, \theta_p) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2$

~ to the contract of the contr

~~~

 $\lceil \ \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \Diamond F, \quad \Box F$ 

• integral — Example:  $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$  (At most 5% leakage time within intervals of at least 60 time units.)

- Duration Calculus is an interval logic.

Strangest operators:

#Item

- Teverywhere — Example: [G]

•  $G, F, I, H : \{0, 1\}$ • Define  $L : \{0, 1\}$  as  $G \land \neg F$ . Same princes

Formulae are evaluated in an (implicitly given) interval.

(Ignition phases last at least one time unit.)

## Contents & Goals

- Model of timed behaviour: state variables and their interpretation
   First order predicate-logic for requirements and system properties
   Classes of requirements (safety, liveness, etc.)

## This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Read (and at best also write) Duration Calculus formulae.
- Content:
- Duration Calculus:
   Assertions, Terms, Formulae, Abbreviations, Examples

2/33

Duration Calculus

3/33

## Symbols: Syntax

Duration Calculus: Overview We will introduce three (or five) syntactical "levels"

- f,g: function symbols, each with arity  $n \in \mathbb{N}_0$ . Called constant if n = 0.
- p,q: predicate symbols, also with arity. n = 2Assume: constants true, false; binary =  $<, >, \le, \ge$ .  $\lozenge$ , 2 (bing) Assume: constants  $0,1,\dots\in\mathbb{N}_0$ ; binary '+' and '.' 3 (fowy)

- $x, y, z \in \mathsf{GVar}$ : global variables.
- \*  $X,Y,Z\in \mathsf{Obs}$ : state variables or observables, each of a data type  $\mathcal{D}$   $\mathcal{D}$  (or  $\mathcal{D}(X),\mathcal{D}(Y),\mathcal{D}(Z)$  to be precise). Called boolean observable if data type is  $\{0,1\}$ . DC744/d):
- ullet d: elements taken from data types  ${\mathcal D}$  of observables.
- ted, grows

# Symbols: Semantics

- Semantical domains are
- $\bullet$  the truth values  $\mathbb{B}=\{tt,ff\},$
- the real numbers R,
- \* time Time,  $(\text{mostly Time} = R_0^+ \text{ (continuous), exception Time} = N_0 \text{ (discrete time))}$
- ullet and data types  $\mathcal{D}.$  ullet ullet ullet downing values of observables
- The semantics of an n-ary function symbol f is a (mathematical) function from  $\mathbb{R}^n$  to  $\mathbb{R}$ , denoted  $\hat{f}$ , i.e.

**€6** :3



## €:R3→R $(a,b,c)\mapsto \frac{a+b}{a+b}$

# Symbols: Examples

- The semantics of the function and predicate symbols assumed above is fixed throughout the lecture:
- $t\hat{rue} = tt$ ,  $f\hat{alse} = ff$
- $\tilde{0} \in \mathbb{R}$  is the (real) number zero, etc.
- $\hat{+}: \mathbb{R}^2 \to \mathbb{R}$  is the addition of real numbers, etc.
- ullet  $\,\hat{=}: \mathbb{R}^2 o \mathbb{B} \,$  is the equality relation on real numbers,
- $\hat{<}: \mathbb{R}^2 o \mathbb{B}$  is the less-than relation on real numbers, etc.
- "Since the semantics is the expected one, we shall often simply use the symbols  $0,1,+,\cdot,=,<$  when we mean their semantics  $\hat{0},\hat{1},\hat{+},\hat{\cdot},=,\hat{<},$ "

8/33

# Symbols: Representing State Variables

Symbols: Semantics

The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

 $V: \mathsf{GVar} \to \mathbb{R}$ 

Priting Daxoz

- For convenience, we shall abbreviate  $\mathcal{I}(X)$  to  $X_{\mathcal{I}}.$ \*+1 &
- An interpretation (of a state variable) can be displayed in form of a timing diagram.  $\uparrow$

For instance,



 $\mathcal{I}(X):\mathsf{Time}\to\mathcal{D}(X)$ 

~ x(F): (1, ~ > 2(F)

Obs=87,68

The semantics of a state variable is time-dependent.

It is given by an interpretation  $\mathcal{I}$ . i.e. a mapping  $\mathcal{K}$   $\mathcal{L}$ :  $\mathcal{I}: \mathsf{Obs} \to (\mathsf{Time} \to \mathcal{D})$ 

We use Val to denote the set of all valuations, i.e.  $Val = (GVar \rightarrow \mathbb{R})$ .

Global variables are though fixed over time in system evolutions. assigning each global variable  $x \in \mathsf{GVar}$  a real number  $\mathcal{V}(x) \in \mathbb{R}$ .

assigning each state variable  $X\in \mathsf{Obs}$  a function

# Symbols: Semantics

The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar} o \mathbb{R}$$

Global variables are though fixed over time in system evolutions We use Val to denote the set of all valuations, i.e.  $Val = (GVar \rightarrow \mathbb{R})$ . assigning each global variable  $x \in \mathsf{GVar}$  a real number  $\mathcal{V}(x) \in \mathbb{R}$ .

9/33

# Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

 $f,g,\quad true, false,=,<,>,\leq,\geq,\quad x,y,z,\quad X,Y,Z,\quad d$ 

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

(iv) Formulae:

$$\theta ::= x \mid \ell \mid f P \mid f(\theta_1, \dots, \theta_n)$$

(v) Abbreviations:

 $F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2$ 

$$\lceil \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \Diamond F, \quad \Box F$$

11/33

State Assertions: Syntax , not the function symbol

The set of state assertions is defined by the following grammar:

$$P := 0 |1|X = d |1P_1|P_1 \wedge P_2$$

with  $d \in \mathcal{D}(X)$ ,  $X \in Obs$ .

We shall use P,Q,R to denote state assertions.

 $\pm = 1$ # (om albour) 1=1 NOT! (\$15 not an deservable)

State Assertions: Semantics

 $\bullet\,$  The semantics of state assertion P is a function

$$\mathcal{I}[\![P]\!]:\mathsf{Time}\to\{0,1\}$$

i.e.  $\mathcal{I}[\![P]\!](t)$  denotes the truth value of P at time  $t\in\mathsf{Time}.$ 

• The value is defined inductively on the structure of P:

$$\begin{split} & I[\textbf{0}](t) = 0 \text{ eR} \\ & \text{Synthis}, & I[\textbf{1}](t) = 1 \text{ (eR)} \\ & \text{synthis}, & \text{II}[\textbf{1}](t) = 1 \text{ (eR)} \\ & I[\textbf{X} = \textbf{d}](t) = \begin{cases} 1 & \text{if } \textbf{X}_{\underline{A}}(t) = d \\ 0 & \text{otherwise}. \end{cases} & (\text{II}(\textbf{c}|\textbf{k}) = d) \\ & I[-P_1](t) = 1 - IIP_1(t) \\ & I[P_1 \land P_2](t) = \begin{cases} 1 & \text{if } IP_1(t) = IIP_2(t) \\ 0 & \text{otherwise}. \end{cases} \end{split}$$

Duration Calculus: Overview

State Assertions: Example

• Boolean observables G and F. • State assertion  $L:=G \land \neg F$ .  $\Big( (G=1)_{\Lambda} \neg (\mathcal{F}=1) \Big)$ 

We will introduce three (or five) syntactical "levels":

(ii) State Assertions:  $f,g,\quad true, false,=,<,>,\leq,\geq,\quad x,y,z,\quad X,Y,Z,\quad d$ 

 $\theta ::= x \mid \ell \mid f P \mid f(\theta_1, \dots, \theta_n)$  $P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$ 

 $F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2$ 

(v) Abbreviations:

 $L_{\mathcal{I}}(2)=0$ , because "

 $\lceil \ \rceil, \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$ 

State Assertions: Notes by by my pow shite (much pay)

- $\quad \mathcal{I}[X](t) = \mathcal{I}[X=1](t) = \mathcal{I}(X)(t) = X_{\mathcal{I}}(t), \text{ if } X \text{ boolean.}$   $\quad \mathcal{I}[P] \text{ is also called interpretation of } P. \text{ identify} \text{ for alpha}$
- We shall write  $P_{\mathcal{I}}$  for it.
- $\bullet$  Here we prefer 0 and 1 as boolean values (instead of tt and ff) for reasons that will become clear immediately.

Terms: Syntax

Duration terms (DC terms or just terms) are defined by the following grammar:

where x is a global variable,  $\ell$  and f are special symbols, P is a state assertion, and f a function symbol (of arity n).  $\theta ::= x \mid \boldsymbol{\ell} \mid \boldsymbol{f} P \mid f(\theta_1, \dots, \theta_n)$ 

ullet is called length operator, f is called integral operator

Notation: we may write function symbols in infix notation as usual, i.e. write  $\theta_1+\theta_2$  instead of  $+(\theta_1,\theta_2)$ .

Definition 1. [Rigid]A term without length and integral symbols is called rigid.

Terms: Semantics Closed intervals in the time domain  $\mathsf{Intv} := \{[b,e] \mid b,e \in \mathsf{Time} \; \mathsf{and} \; b \leq e\}$ 

Point intervals: [b,b]

18/33

Terms: Semantics Well-defined?

 $\, \bullet \,$  IOW: is there a  $P_{\!\mathcal{I}}$  which is not (Riemann-)integrable? Yes. For instance  $\bullet$  So,  $\mathcal{I}[\![f\,P]\!](\mathcal{V},[b,e])$  is  $\int_b^v\!P_{\mathcal{I}}(t)\,dt$  — but does the integral always exist?

 $P_{\mathcal{I}}(t) = \begin{cases} 1 & \text{, if } t \in \mathbb{Q} \\ 0 & \text{, if } t \notin \mathbb{Q} \end{cases}$ 

References

 $\bullet$  To exclude such functions, DC considers only interpretations  $\mathcal I$  satisfying the following condition of finite variability:

For each state variable X and each interval [b,e] there is a finite partition of [b,e] such that the interpretation  $X_{\mathcal{I}}$  is constant on each part.

Thus on each interval [b,e] the function  $X_{\mathcal{I}}$  has only finitely many points of discontinuity.

21/33

Terms: Semantics

Terms: Example

The semantics of a term is a function

 $\mathcal{I}\llbracket\theta
rbracket$ :  $\mathsf{Val} \times \mathsf{Intv} \to \mathbb{R}$ 

i.e.  $\mathcal{I}[\theta](\mathcal{V},[b,e])$  is the real number that  $\theta$  denotes under interpretation  $\mathcal{I}$  and valuation  $\mathcal{V}$  in the interval [b,e].

• The value is defined inductively on the structure of  $\theta$ :

 $\mathcal{I}[\![\ell]\!](\mathcal{V},[b,e]) = \mathbf{e} - \mathbf{b}$ 

20/33

 $\mathcal{I}[x](\mathcal{V},[b,e]) = \mathcal{V}(x) \in \mathbb{R}$ 

 $\mathcal{I}[\![fP]\!](\mathcal{V},[b,e]) = \int_{b}^{e} \frac{P_{\mathcal{E}}(t) dt}{P_{\mathcal{E}}(t)} dt$ IEPS: Time > 80,19

$$\begin{split} & \underset{\mathbb{T}_{0}}{\mathbb{T}}\mathbb{E}(Y_{i}, [b, d_{i}]) = \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i}(b, d_{i}), \mathcal{I}\mathbb{E}(Y_{i})(i, [b, d_{i}]) = \mathcal{O} \right) \\ & \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(X_{i})(Y_{i}, [b, d_{i}]) = \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i})(y_{i}, b_{i}), \mathcal{I}\mathbb{E}(Y_{i})(y_{i}, b_{i}) \right) = \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i})(y_{i}, b_{i}) + \mathcal{O} \right) \\ & \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(X_{i})(Y_{i}, [b, d_{i}]) = \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i})(y_{i}, b_{i}) + \mathcal{O} \right) + \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i})(y_{i}, b_{i}) + \overset{\wedge}{\wedge} \left( \underset{\mathcal{L}}{\mathbb{T}}\mathbb{E}(Y_{i})(y_{i}, b_{i}) + \mathcal{O} \right) +$$
 $\theta = x \cdot \int L$ 

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

32/33

33/33