40506

Real-Time Systems

Lecture 02: Timed Behaviour

2014-05-06

Dr. Bernd Westphal

Albert-Ludwigs-Universitt Freiburg, Germany

Real-Time Behaviour, More Formally...

Contents & Goals

Last Lecture:

© Motivation, Overview

This Lecture:
« Educational Objectives:

o Get acquainted with one (simple but powerful)
formal model of timed behaviour.

© See how first order predicate-logic can be used to state requirements.

o Content:
« Time-dependent State Variables
! » Requirements and System Properities in first order predicate logic
o Classes of Timed Properties

State Variables (or Observables)

o We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obsy, ..., 0bsy

each equipped with a domain D(obs;), 1 <i < n.

Example: gas burner

G : {0,1} — 0 iff valve closed
F:{0,1} — 0 iff no flame

1:{0,1} — 0 iff ignition off

X H :{0,1} — 0 iff no heating request

Recall: Prerequisites

controller

—=
X
A vz VT

To
design a (gas burner) controller that meets its requirements

we need

v ool el o) babina i e e

o a lopnge b Guclsly and Cowniny secly dsf.&.\
o Lo b dssthe condos boluvion

oo wokon f St ded o pled o iy ey

3730

System Evolution over Time

» One possible evolution (or behaviour) of the considered system over time
is represented as a function

7 : Time — D(obsy) x - -+ x D(obsy).

 If (and only if) observable obs; has value d; € D(obs;) at time t € Time,
1<i<n, we set

o For convenience, we use

obs; : Time — D(obs;)

Smodel

to denote the projection of 7 onto the i-th component.

What’s the time

o There are two main choices for the time domain Time:

o discrete time: Time = Ny, the set of natural numbers.

* continuous
or dense time: Time = ﬁ@r. the set of non-negative real numbers.

o Throughout the lecture we shall use the continuous time model and
consider discrete time as a special case.

Because
o plant models usually live in continuous time,
* we avoid too early introduction introduction of hardware considerations,

o Interesting view: continous-time is a well-suited abstraction from the
iscrete-time realms induced by clock-cycles etc.

Levels of Detail

Note:

Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

o if the gas valve has different positions, use

G : Time — {0,1,2,3}

(D(G) is never continuous in the lecture, otherwise it's a hybrid system

if the thermostat and the controller are connected a bus and exchange

messages, use

B : Time — Msg*
to model the receive buffer as a finite sequence of messages from Msg.

° etc.

10/30

Example: Gas Burner

One possible evolution of considered system over
time is represented as function

m: Time — D(obsy) X -+ x D(obsy)
with
7(t) = (i, dy)

if (and only if) observable obs; has value d; €
D(obs;) at time ¢ € Time.

For convenience: use obs; : Time — D(obs;)

)

)= (1,1,0,0)

I()=0

Time

System Properties: A First Approach

Example: Gas Burner

Time

930

Predicate Logic

pu=obst)=d|-p|p1Ver|lprApa| o1 = 2|1 = @2
|VteTimeey |VEe [t +ci,tr+co]ep

obs an observable, d € D(obs), t € Var logical variable, c;,cs € Ry
constants.

We assume the standard semantics interpreted over system evolutions

me — D(obs),1 <i < n.

obs; :

That is, given a particular system evolution 7 and a formula ¢, we can tell
whether 7 satisfies ¢ under a given valuation /3, denoted by 7, 3 = .

06

12730

Recall: Predicate Logic, Standard Semantics Predicate Logic el ialles s prnAfod Requirements and System Properties

Y

Evolution of system over time: 7 : Time — D(obsy) X -+ x D(obs,). . . . N N _— . . N .
IfF obs; has value d; € D(obs;) at ¢ € Time, set: 7(0) = (duy .. do). uoﬁ <<nm can N_ms\ a closed predicate logic formula ¢ as a concise o So we can use first-order predicate logic to formally specify requirements.
For convenience: use obs; : Time — D(obs;). escription o A requirement ‘Req’ is a set of system behaviours with the pragmatics
{7 : Time — D(obsy) x -+ x D(obsy) | .0 = ¢}, that, s_.,_mnm,wm_‘ the beh of the final | ation are, they shall
[hin this set.
pu=obs(t) =d| v |eVerloihezlvr = g2l <= @ the set of all system evolutions satisfying . For instance,
|VteTimeoy |VEe[t+c,tr+co)ep
For example, Req <= Vt € Time e —(I(t) A =G(t))
o Let 3: Var — Time be a valuation of the logical variables. Vt € Time o =(I(t) A =G(t)) . N
describes all Luti " here i o ith closed ! says: "an implementation is fine as long as it doesn’t ignite without gas in
escribes all evolutions where there is no ignition with closed gas valve. i ions”
o 7B obsi(t) = d iff g g any of its evolutions”.
o B E —piff o We can also use first-order predicate logic to formally describe properties of
e mBE IV iff .. . the 1 or design
g 4 3 For instance,
o ™A EYiETimeepiff Des 1= Vte TimeoI(t) = V' €[t—1,t+1] e G(t)
g mBEVte i tentrtelepiff says that our controller opens the gas valve at least 1 time unit before
5 14/30 S ion and keeps it open. 1530
Example: Gas Burner Correctness

SN i an dbrers b foiunly o Let ‘Req’ be a requirement,

Req 4% Vi € Time o —~(I(t) A =G(2))

o 'Des' be a design, and

mpl' be an implementation.
Des :<= Vt € Times

Recall: each is a set of evolutions, i.e. a subset of A._.::m — waHU??LV.

I(t) = VHelt—1t+1eG(t)))]
7€ Rea? - 14, =0 1I&) =0 described in any form. Classes of Timed Properties
€ Des? o 6e) =1)= 6 We say

2 o 'Des’ is a correct design (wrt. ‘Req’) if and only i
G tq ok Gl ot ‘Des’ i fesi ‘Req’) if and only if
e Il 1 J
v TR - /=1 Des C Req.
(1 o 6)71
—— fov el
L o ol *«\w o ‘lmpl" is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if
L N - Teg)=0 Impl C Des (or Impl C Req) i
g f o b o)) '
] Time If 'Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
k3 t €3 & proving the design correct amounts to proving that ‘Des = Req’ is valid.

Safety Properties

o A safety property states that

something bad must never happen [Lamport].

nside level crossing with gates open.

o Example: tra
» More general, assume observable C : [fm&=3 {0, 1} where C(t) = 1
represents a critical system state at time t. o, Lof*

Then
YVt e Time e ~C(t)

is a safety property.

o In general, a safety property is characterised as a property that can be

falsified in bounded time.

* But safety is not everything...

19130

Duration Properties A®)% <— ottt byerul @
oo 8 SO of e A

. leale,
o A duration property states that ol
property a4 <— o Gu)NFe)
for observation interval [b, €] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical ulbe)

state has an upper bound u(b, ¢). A= 0.05
“(e-t)
o Example: leakage in gas burner. £
u\!\ i —
* More general, re-consider critical thing C': ESL r@,}\

Then

e
Yhe € Times (40) = KL L=) %%&.e
is a duration property.

o This property can again be falsified in finite zam.RA
o

|

2230

Liveness Properties

o The simplest form of a liveness property states that

something good eventually does happen.

o Example: gates open for road tra
 More general, assume observable G : FBmE=g {0, 1} where G(t) = 1
represents a good system state at time ¢.

Then
Jt € Time o G(t)

is a liveness property.

ite time.

« Note: not falsified in

veness is too weak...

7 e With real

Duration Calculus

20730

Bounded Response Properties

o A bounded response property states that
the desired reaction on an input occurs in time interval [b, e].

Example: from request to secure level crossing to gates closed.

» More general, re-consider good thing G : [F&=¥ {0, 1} and request
R : B=e=0{0,1}.

Then
b e
Vi € Timee (R(t) = 3tz € [t + Bty + 1] © G(t2))

is a bounded liveness property.
This property can again be falsified in finite time.

With gas burners, this is still not everything...

i 21730

Duration Calculus: Preview

o Duration Calculus is an interval logic.
o Formulae are evaluated in an
(implicitly given) interval.

aluost o G,F,I.H:{0,1}
Strangest operators: o Define L : {0,1} as G A-F.

eleverywhere — Example: [G]
(Holds in a given interval [b, ¢] iff the gas valve is open almost everywhere.)
o chop — Example: ([-I7;[I];[~1]) = (>1
(Ignition phases last at least one time unit.)
¢ e integral — Example: £ > 60 = [L < n%o
© (At most 5% leakage time within intervals of at least 60 time units.)

2014-05.06

2430

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

0u=x || [B) £(0r,....0,) ?& R

yeld

1. [Pl [P, [PI<, OF, OF

Symbols: Examples

o The semantics of the function and predicate symbols assumed above
is fixed throughout the lecture

true = tt, ??m =ff

0 € R is the (real) number zero, etc.
o +:R? = R is the addition of real numbers, etc.

o =:R? — B is the equality relation on real numbers,

< :R?— B is the less-than relation on real numbers, etc.

nce the semantics is the expected one, we shall often simply use the

symbols 0,1, +, -, =, < when we mean their semantics 0, 1, +,%, =,

2830

Symbols: Syntax

o f,g: function symbols, each with arity n € INy.
Called constant if n = 0.
Assume: constants 0,1, -- € INg; binary ‘+" and -

* p.q: predicate symbols, also with arity.

Assume: constants true, false; binary =, <, >, <, >.
o x,y,z € GVar: global variables.
o X,Y,Z € Obs: state variables or observables, each of a data type D

(or D(X),D(Y),D(Z) to be precise).
Called boolean observable if data type is {0,1}.

elements taken from data types D of observables.

Symbols: Semantics

o The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar =+ R

assigning each global variable z € GVar a real number V(z) € R.
We use Val to denote the set of all valuations, i.e. Val = (GVar — R).

Global va

bles are though fixed over time in system evolutions.

26730

Symbols: Semantics

» Semantical domains are
o the truth values B = {tt, ff},
o the real numbers R,

o time Time,
(mostly Time = Ry (continuous), exception Time = IN, (discrete time))

* and data types D.

The semantics of an n-ary function symbol f
is a (mathematical) function from R" to IR, denoted f, i

fiR* SR

o The semantics of an n-ary predicate symbol p
is a function from R™ to BB, denoted p, i.e.

p:R" - B.)
27/30

Symbols: Semantics

» The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar - R

assigning each global variable 2 € GVar a real number V(z) € R.
ns, i.e. Val = (GVar — R).

We use Val to denote the set of all valua

Global variables are though fixed over time in system evolutions.

The semantics of a state variable is time-dependent.
It is given by an interpretation Z, i.e. a mapping

I :0bs — (Time — D)

sd

ning each state variable X € Obs a function

40506

I(X) : Time — D(X)

such that Z(X)(t) € D(X) denotes the value that X has at time ¢ € Time??*

Symbols: Representing State Variables

« For convenience, we shall abbreviate Z(X) to X7.

o An interpretation (of a state variable) can be displayed in form of a
timing diagram.

For instance,

Xz:

with D(X) = {d1, ds}.

kit 30730

