Real-Time Systems

Lecture 02: Timed Behaviour

2014-05-06

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Real-Time Behaviour, More Formally...

Contents & Goals

Recall: Prerequisites

sensors

actuators

controller

Last Lecture:

This Lecture:

- Get acquainted with one (simple but powerful) formal model of timed behaviour.
- Content:
- Requirements and System Properities in first order predicate logic
 Classes of Timed Properties

a working of "much" — and a muthod to brookly precing · a language & describe contake belowing

o a language to consistly and conseniently spelly replicancel

· a formal wealth of balanciers in quantitative time

design a (gas burner) controller that meets its requirements

Motivation, Overview

- Educational Objectives:
- See how first order predicate-logic can be used to state requirements.
- Time-dependent State Variables

System Evolution over Time

State Variables (or Observables)

We assume that the real-time systems we consider is characterised by a finite set of state variables (or observables)

 obs_1, \dots, obs_n

Example: gas burner

each equipped with a **domain** $\mathcal{D}(obs_i)$, $1 \leq i \leq n$.

- One possible evolution (or behaviour) of the considered system over time is represented as a function
- $\pi: \mathsf{Time} \to \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n).$
- If (and only if) observable obs_i has value $d_i \in \mathcal{D}(obs_i)$ at time $t \in \mathsf{Time},$ $1 \le i \le n,$ we set

$$\pi(t)=(d_1,\ldots,d_n).$$

For convenience, we use

 $obs_i: \mathsf{Time} \to \mathcal{D}(obs_i)$

to denote the projection of π onto the i-th component.

 $G:\{0,1\} \longrightarrow 0 \text{ iff valve closed}$ $F:\{0,1\} \longrightarrow 0 \text{ iff no flame}$ $0:\{0,1\} \longrightarrow 0 \text{ iff no flame}$ $0:\{0,1\} \longrightarrow 0 \text{ iff ignition off}$ $0:\{0,1\} \longrightarrow 0 \text{ iff no heating request}$

What's the time?

- There are two main choices for the time domain Time:
- ullet discrete time: Time $= \mathbb{N}_0$, the set of natural numbers.
- continuous or dense time: $\label{eq:time} \mbox{Time} = \mathbb{R}_0^+, \mbox{ the set of non-negative real numbers}.$
- Throughout the lecture we shall use the continuous time model and consider discrete time as a special case.
- · plant models usually live in continuous time,
- we avoid too early introduction introduction of hardware considerations,
- Interesting view: continous-time is a well-suited abstraction from the discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

Example: Gas Burner

I(+)=0

9/30

System Properties: A First Approach

to model the receive buffer as a finite sequence of messages from ${\it Msg.}$ etc.

10/30

 $B: \mathsf{Time} \to \mathit{Msg}^*$

if the thermostat and the controller are connected via a bus and exchange

 $(\mathcal{D}(G)$ is never continuous in the lecture, otherwise it's a hybrid system!)

 $G:\mathsf{Time} \to \{0,1,2,3\}$

11/30

Predicate Logic

Levels of Detail

Note:

Depending on the choice of observables we can describe a real-time system at various levels of detail.

if the gas valve has different positions, use

For instance,

$$\begin{split} \varphi &\coloneqq obs(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \implies \varphi_2 \mid \varphi_1 \iff \varphi_2 \\ \mid \forall t \in \mathsf{Time} \bullet \varphi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi \end{split}$$

constants. obs an observable, $d \in \mathcal{D}(obs), \ t \in \mathsf{Var}$ logical variable, $c_1, c_2 \in \mathbb{R}_0^+$

We assume the standard semantics interpreted over system evolutions

 $obs_i: \mathsf{Time} \to \mathcal{D}(obs), 1 \leq i \leq n.$

That is, given a particular system evolution π and a formula φ , we can tell whether π satisfies φ under a given valuation β , denoted by $\pi,\beta \models \varphi$.

Recall: Predicate Logic, Standard Semantics

$$\begin{split} \varphi ::= obs(t) = d \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \implies \varphi_2 \mid \varphi_1 \iff \varphi_2 \\ \mid \forall \, t \in \mathsf{Time} \bullet \varphi \mid \forall \, t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi \end{split}$$

- Let $\beta: \mathsf{Var} \to \mathsf{Time}$ be a **valuation** of the logical variables.
- $\pi, \beta \models obs_i(t) = d$ iff
- $\pi, \beta \models \neg \varphi$ iff
- $\pi, \beta \models \varphi_1 \lor \varphi_2$ iff ...
- $\pi, \beta \models \forall t \in \mathsf{Time} \bullet \varphi \mathsf{iff}$
- $\pi, \beta \models \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi$ iff

describes all evolutions where there is no ignition with closed gas valve. For example, the set of all system evolutions satisfying φ . Note: we can view a closed predicate logic formula φ as a concise description of $\{\pi: \mathsf{Time} \to \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n) \mid \pi, \emptyset \models \varphi\},\$ $\forall\,t\in\mathsf{Time}\bullet\neg(I(t)\wedge\neg G(t))$

Predicate Logic at logical variables affect quantified

Example: Gas Burner $\pi \in \text{Req}$? $\pi \in \text{Des}$? $\begin{array}{ccc} \mathsf{Des} \ : \Longleftrightarrow \ \forall \, t \in \mathsf{Time} \bullet \\ I(t) \ \Longrightarrow \ \forall \, t' \in [t-1,t+1] \bullet G(t') \end{array}$ $:\iff \forall t\in \mathsf{Time} \bullet \neg (I(t) \land \neg G(t))$ legy is an altern. Too formula ţ (\$ £7 04 (\$ £7) = 0 (14) = 0 1(t,) = 0 . (1(t,)) = 0 . (1(t . I(4)=1 . 6(4)=1 An 2625-164 6 06 An 25

Correctness

- Let 'Req' be a requirement,
- 'Des' be a design, and
- 'Impl' be an implementation.

Recall: each is a set of evolutions, i.e. a subset of $(\mathsf{Time} \to \times_{i=1}^n \mathcal{D}(obs_i))$, described in any form.

'Des' is a correct design (wrt. 'Req') if and only if

 $Des \subseteq Req.$

• 'Impl' is a correct implementation (wrt. 'Des' (or 'Req')) if and only if

 $Impl \subseteq Des$ (or $Impl \subseteq Req$)

· I(4)=0

Requirements and System Properties

 So we can use first-order predicate logic to formally specify requirements. A requirement 'Req' is a set of system behavious with the pragmatics that, whatever the behavious of the final implementation are, they shall lie within this set.

For instance,

$$\mathsf{Req} \; : \Longleftrightarrow \; \forall \, t \in \mathsf{Time} \bullet \neg (I(t) \land \neg G(t))$$

says: "an implementation is fine as long as it doesn't ignite without gas in any of its evolutions" .

 We can also use first-order predicate logic to formally describe properties of the implementation or design decisions. For instance,

 $\mathsf{Des} :\iff \forall \, t \in \mathsf{Time} \bullet I(t) \implies \forall t' \in [t-1,t+1] \bullet G(t'))$

says that our controller opens the gas valve at least 1 time unit before ignition and keeps it open.

15/30

14/30

Classes of Timed Properties

Safety Properties

- A safety property states that
- something bad must never happen [Lamport].

Example: train inside level crossing with gates open.

• More general, assume observable $C: \square$ The energy $\{0,1\}$ where C(t)=1 represents a critical system state at time t.

 $\forall t \in \mathsf{Time} \bullet \neg C(t)$

is a safety property.

- In general, a safety property is characterised as a property that can be falsified in bounded time.
- But safety is not everything..

19/30

• More general, re-consider critical thing $C: \boxed{\text{Disse}} \{0,1\}$ Example: leakage in gas burner. $\forall b,e \in \mathsf{Time} \bullet \left(\underline{A}(b,e) \Longrightarrow \underbrace{\int_{b}^{e} \underline{C}(t) \underline{dt} \leq \underline{u}(b,e)}_{L} \right) \int_{C}^{e} \underline{C}(bde + be) dt$

Liveness Properties

- The simplest form of a liveness property states that something good eventually does happen.
- Example: gates open for road traffic.
- More general, assume observable $G: \overline{\square}$ $\{0,1\}$ where G(t)=1 represents a good system state at time t.Then

 $\exists\, t\in \mathsf{Time}\bullet G(t)$

 Note: not falsified in finite time. is a liveness property.

With real-time, liveness is too weak...

20/30

Bounded Response Properties

- A bounded response property states that
- the desired reaction on an input occurs in time interval [b,e].
- Example: from request to secure level crossing to gates closed.
- More general, re-consider good thing $G: \fbox{\mbox{\bf Disc}}\mbox{\bf 2}\{0,1\}$ and request R: $\mbox{\bf Disc}\mbox{\bf 2}\{0,1\}.$

 $\forall\, t_1 \in \mathsf{Time} \bullet (R(t_1) \implies \exists\, t_2 \in [t_1 + \textcircled{\rlap{\sl p}}, t_1 + \textcircled{\rlap{\sl p}}] \bullet G(t_2))$

is a bounded liveness property.

- This property can again be falsified in finite time.
- With gas burners, this is still not everything...

21/30

Duration Calculus

Duration Calculus is an interval logic.

par sales (Annu annuar parlamenta)

Duration Calculus: Preview

- Formulae are evaluated in an (implicitly given) interval.

 $\bullet \ G, F, I, H : \{0,1\}$ $\bullet \ \mathsf{Define} \ L : \{0,1\} \ \mathsf{as} \ G \land \neg F.$

angest operators:

• • • everywhere — Example: $\lceil G \rceil$

(Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)

 $\bullet \ \ \mathsf{chop} - \mathsf{Example} \colon (\lceil \neg I \rceil \, ; \lceil I \rceil \, ; \lceil \neg I \rceil) \implies \ell \geq 1$ (Ignition phases last at least one time unit.)

• integral — Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)

23/30

Duration Calculus: Overview

Symbols: Examples

- The semantics of the function and predicate symbols assumed above is fixed throughout the lecture:
- tr̂ue = tt, false = ff
- $0 \in \mathbb{R}$ is the (real) number zero, etc.
- $\hat{+}: \mathbb{R}^2 \to \mathbb{R}$ is the addition of real numbers, etc.
- ullet $\hat{=}:\mathbb{R}^2 o\mathbb{B}$ is the equality relation on real numbers,
- ullet $\hat{<}:\mathbb{R}^2 o\mathbb{B}$ is the less-than relation on real numbers, etc.

- "Since the semantics is the expected one, we shall often simply use the symbols 0, 1, +, \cdot , =, < when we mean their semantics $\hat{0}, \hat{1}, \hat{+}, \hat{\gamma}, \hat{=}, \hat{<}$."

28/30

Symbols: Syntax

Symbols: Semantics

Semantical domains are

 the real numbers IR, • the truth values $\mathbb{B} = \{tt, ff\}$,

- f,g: function symbols, each with arity $n \in \mathbb{N}_0$.
- Assume: constants $0,1,\dots\in {\rm I\!N}_0;$ binary '+' and '·'. Called constant if n = 0.
- p,q: predicate symbols, also with arity. Assume: constants $\mathit{true}, \mathit{false}; \mathsf{binary} =, <, >, \leq, \geq.$

• $x,y,z\in \mathsf{GVar}$ global variables.

- $X,Y,Z\in \mathsf{Obs}$: state variables or observables, each of a data type $\mathcal D$ (or $\mathcal D(X),\mathcal D(Y),\mathcal D(Z)$ to be precise). Called boolean observable if data type is $\{0,1\}$.
- d: elements taken from data types ${\cal D}$ of observables.

26/30

• The semantics of an n-ary predicate symbol p is a function from \mathbb{R}^n to \mathbb{B} , denoted \hat{p} , i.e.

 $\hat{p}: \mathbb{R}^n \to \mathbb{B}$.

27/30

• The semantics of an n-ary function symbol f is a (mathematical) function from \mathbb{R}^n to \mathbb{R} , denoted \hat{f} , i.e.

 $\hat{f}: \mathbb{R}^n \to \mathbb{R}$.

* time Time, $(mostly\ Time=R_0^+\ (continuous),\ exception\ Time=N_0\ (discrete\ time))$ * and data types $\mathcal D.$

Symbols: Semantics

Symbols: Semantics

The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

 $\mathcal{V}:\mathsf{GVar} \to \mathbb{R}$

Global variables are though fixed over time in system evolutions. We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$. assigning each global variable $x \in \mathsf{GVar}$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

 \bullet The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar}\to\mathbb{R}$$

Global variables are though fixed over time in system evolutions. We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$. assigning each global variable $x \in \mathsf{GVar}$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

• The semantics of a state variable is time-dependent. It is given by an interpretation \mathcal{I} , i.e. a mapping

$$\mathcal{I}:\mathsf{Obs} o (\mathsf{Time} o \mathcal{D})$$

assigning each state variable $X\in\mathsf{Obs}$ a function

$$\mathcal{I}(X):\mathsf{Time}\to\mathcal{D}(X)$$

such that $\mathcal{I}(X)(t) \in \mathcal{D}(X)$ denotes the value that X has at time $t \in \mathsf{Time}^{29/\varpi}$

Symbols: Representing State Variables

- \bullet . For convenience, we shall abbreviate $\mathcal{I}(X)$ to $X_{\mathcal{I}}.$
- An interpretation (of a state variable) can be displayed in form of a timing diagram.
 For instance,

