Real-Time Systems

Lecture 15: Extended TA Cont'd, Uppaal Queries, Testable DC

2014-07-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Decidability of the location reachability problem:
 - region automaton & zones
- Extended Timed Automata syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What's an urgent/committed location? What's the difference? Urgent channel?
 - Where has the notion of "input action" and "output action" correspondences in the formal semantics?
 - How can we relate TA and DC formulae? What's a bit tricky about that?
 - Can we use Uppaal to check whether a TA satisfies a DC formula?

• Content:

- Extended TA semantics
- The Logic of Uppaal
- Testable DC

Recall: Extended Timed Automata

Definition 4.39. An extended timed automaton is a structure

$$\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$$

where L, B, X, I, ℓ_{ini} are as in Def. 4.3, except that location invariants in I are downward closed, and where

- $C \subseteq L$: committed locations,
- $U \subseteq B$: urgent channels,
- V: a set of data variables,
- $E \subseteq L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L$: a set of **directed edges** such that

$$(\ell, \alpha, \varphi, \vec{r}, \ell') \in E \wedge \operatorname{chan}(\alpha) \in U \implies \varphi = true.$$

Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

Operational Semantics of Networks

Definition 4.40. Let $\mathcal{A}_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i})$, $1 \leq i \leq n$, be extended timed automata with pairwise disjoint sets of clocks X_i .

The operational semantics of $\mathcal{C}(\mathcal{A}_{e,1},\dots,\mathcal{A}_{e,n})$ (closed!) is the labelled transition system

$$\begin{split} \mathcal{T}_e(\mathcal{C}(\mathcal{A}_{e,1},\dots,\mathcal{A}_{e,n})) \\ &= (\mathit{Conf},\mathsf{Time} \cup \{\tau\}, \{ \xrightarrow{\lambda} \mid \lambda \in \mathsf{Time} \cup \{\tau\}\}, C_{ini}) \end{split}$$

where

- $X = \bigcup_{i=1}^n X_i$ and $V = \bigcup_{i=1}^n V_i$,
- $Conf = \{ \langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \to \mathsf{Time}, \ \nu \models \bigwedge_{k=1}^n I_k(\ell_k) \},$
- $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap Conf$,

and the transition relation consists of transitions of the following three types.

5/43

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.
- Extended timeshift $\nu + t$, $t \in \text{Time}$, applies to clocks only:
 - $(\nu + t)(x) := \nu(x) + t, x \in X$
 - $(\nu + t)(v) := \nu(v), v \in V.$
- Effect of modification $r \in R(X, V)$ on ν , denoted by $\nu[r]$:

$$\begin{split} \nu[x:=0](a) &:= \begin{cases} 0 \text{, if } a=x, \\ \nu(a) \text{, otherwise} \end{cases} \\ \nu[v:=\psi_{int}](a) &:= \begin{cases} \nu(\psi_{int}) \text{, if } a=v, \\ \nu(a) \text{, otherwise} \end{cases} \end{split}$$

• We set $\nu[\langle r_1, \dots, r_n \rangle] := \nu[r_1] \dots [r_n] = (((\nu[r_1])[r_2]) \dots)[r_n].$

15 - 2014-07-24 - Setasem -

Op. Sem. of Networks: Internal Transitions

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ such that
 - there is a τ -edge $(\ell_i, \tau, \varphi, \vec{r}, \ell'_i) \in E_i$,
 - $\nu \models \varphi$,
 - $\vec{\ell}' = \vec{\ell}[\ell_i := \ell_i']$,
 - $\nu' = \nu[\vec{r}]$,
 - $\nu' \models I_i(\ell'_i)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \dots, n\}$ then $\ell_i \in C_i$.

-15-2014-07-24-Setasem-

7/43

Op. Sem. of Networks: Synchronisation Transitions

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ such that
 - there are edges $(\ell_i,b!,\varphi_i,\vec{r_i},\ell_i')\in E_i$ and $(\ell_j,b?,\varphi_j,\vec{r_j},\ell_j')\in E_j$,
 - $\nu \models \varphi_i \land \varphi_j$,
 - $\bullet \ \vec{\ell'} = \vec{\ell}[\ell_i := \ell'_i][\ell_j := \ell'_j],$
 - $\nu' = \nu[\vec{r}_i][\vec{r}_j]$,
 - $\nu' \models I_i(\ell'_i) \land I_j(\ell'_j)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \dots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

- 15 – 2014-07-24 – Setasem –

Op. Sem. of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
 - $\nu + t \models \bigwedge_{k=1}^{n} I_k(\ell_k)$,
 - () there are no $i,j\in\{1,\ldots,n\}$ and $b\in U$ with $(\ell_i,b!,\varphi_i,\vec{r_i},\ell_i')\in E_i$ and $(\ell_j,b?,\varphi_j,\vec{r_j},\ell_j')\in E_j$,
 - (\clubsuit) there is no $i \in \{1, \ldots, n\}$ such that $\ell_i \in C_i$.

-15 - 2014-07-24 -Setasem -

9/43

Restricting Non-determinism: Urgent Location

	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$
			$(x \ge y \implies y \le 0))$
\mathcal{N}	~	X	X
${\cal N}$, q_1 urgent	✓	√	✓
\mathcal{N} , q_1 comm.			
\mathcal{N} , b urgent			11

– 15 – 2014-07-24 – Setasem –

11/43

Restricting Non-determinism: Committed Location

		Property 1	Property 2	Property 3
ы В		$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	
Setas				$(x \ge y \implies y \le 0))$
24 –	\mathcal{N}	>	X	×
4-07-	${\cal N}$, q_1 urgent	/	✓	~
- 201,	\mathcal{N} , q_1 comm.	×	✓	✓ ·
- 15 -	\mathcal{N} , b urgent			12/4

Restricting Non-determinism: Urgent Channel

	Property 1	Property 2	Property 3	
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$	
			$(x \ge y \implies y \le 0))$	
\mathcal{N}	~	X	X	
\mathcal{N} , q_1 urgent	>	✓	✓	
\mathcal{N} , q_1 comm.	X	✓	✓	
\mathcal{N} , b urgent	✓	X	V 13	3/43

-15 - 2014-07-24 -Setasem -

Extended vs. Pure Timed Automata

$$\begin{split} \mathcal{A}_e &= (L,C,B,U,X,V,I,E,\ell_{ini}) \\ (\ell,\alpha,\varphi,\vec{r},\ell') \in L \times B_{!?} \times \Phi(X,V) \times R(X,V)^* \times L \\ \text{vs.} \\ \mathcal{A} &= (L,B,X,I,E,\ell_{ini}) \\ (\ell,\alpha,\varphi,Y,\ell') \in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L \end{split}$$

- ullet \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
 - $C = \emptyset$,
 - $U = \emptyset$,
 - $V = \emptyset$,
 - for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.
 - $\bullet \ I(\ell), \varphi \in \Phi(X) \ \text{is then a consequence of} \ V = \emptyset.$

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$$

and

$$\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n),$$

where $\{b_1,\ldots,b_m\}=\bigcup_{i=1}^n B_i$, coincide, i.e.

$$\mathcal{T}_e(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)) = \mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n)).$$

15 - 2014-07-24 - Sepurel -

16/43

Reachability Problems for Extended Timed Automata

- 15 - 2014-07-24 - main -

Theorem 4.33. [Location Reachability] The location reachability problem for **pure** timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for **pure** timed automata is **decidable**.

• And what about tea Wextended timed automata?

18/43

What About Extended Timed Automata?

Extended Timed Automata add the following features:

- Data-Variables
 - ullet As long as the domains of all variables in V are finite, adding data variables doesn't hurt.
 - If they're infinite, we've got a problem (encode two-counter machine).
- Structuring Facilities
 - Don't hurt they're merely abbreviations.
- Restricting Non-determinism
 - Restricting non-determinism doesn't affect (or change) the configuration space Conf.
 - Restricting non-determinism only removes certain transitions, so makes reachable part of the region automaton even smaller (not necessarily strictly smaller).

Uppaal Fragment of Timed Computation Tree Logic

Consider $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ over data variables V.

• basic formula:

$$atom ::= \mathcal{A}_i.\ell \mid \varphi$$

where $\ell \in L_i$ is a location and φ a constraint over X_i and V.

• configuration formulae:

$$term ::= atom \mid \neg term \mid term_1 \wedge term_2 \nearrow G$$

• existential path formulae:

("exists finally", "exists globally")

e-formula ::= $\exists \lozenge term \mid \exists \Box term$

• universal path formulae: ("always finally", "always globally", "leads to")

$$a\text{-}formula ::= \forall \Diamond \ term \mid \forall \Box \ term \mid term_1 \longrightarrow term_2$$

• formulae:

$$F ::= e ext{-}formula \mid a ext{-}formula$$

- 15 - 2014-07-24 - Sutl -

Configurations at Time t

• Recall: computation path (or path) starting in $\langle \vec{\ell}_0, \nu_0 \rangle, t_0$:

$$\xi = \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \vec{\ell_1}, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \vec{\ell_2}, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

which is infinite or maximally finite.

• Given ξ and $t \in \mathsf{Time}$, we use $\xi(t)$ to denote the set

$$\{\langle \vec{\ell}, \nu \rangle \mid \exists i \in \mathbb{N}_0 : t_i \leq t \leq t_{i+1} \land \vec{\ell} = \vec{\ell}_i \land \nu = \nu_i + t - t_i \}.$$

of configurations at time t.

- Why is it a set?
- · Can it be empty?

22/43

Satisfaction of Uppaal-Logic by Configurations

• We define a satisfaction relation

$$\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models F$$

between time stamped configurations

$$\langle \vec{\ell_0}, \nu_0 \rangle, t_0$$

of a network $\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$ and formulae F of the Uppaal logic.

- It is defined inductively as follows:
- $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \mathcal{A}_i.\ell$ iff ℓ_0 , i= ℓ

- $\begin{array}{ll} \bullet & \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \varphi & \text{iff } \nu_0 \models \varphi \\ \\ \bullet & \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \neg term & \text{iff } \angle \vec{\ell}_0, \nu_0 \rangle, \vec{\ell}_0 \not\models \not \text{term} \\ \\ \bullet & \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models term_1 \wedge term_2 & \text{iff } \angle \vec{\ell}_0, \nu_0 \rangle, \vec{\ell}_0 \not\models \not \text{term}; , \quad i=1,2 \end{array}$

Satisfaction of Uppaal-Logic by Configurations

Exists finally:

- $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \exists \Diamond term$
 - $\text{iff} \quad \exists \ \mathsf{path} \ \xi \ \ \mathsf{of} \ \mathcal{N} \vec{\ \ } \mathsf{starting} \ \ \mathsf{in} \ \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0$ $\exists \ t \in \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in Conf: \\ t_0 \leq t \wedge \langle \vec{\ell}, \nu \rangle \in \xi(t) \wedge \langle \vec{\ell}, \nu \rangle, t \models term$

Example: $\exists \Diamond \varphi$

24/43

Satisfaction of Uppaal-Logic by Configurations

Exists globally:

- $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \exists \Box term$
- iff $\exists \operatorname{path} \xi \operatorname{of} \mathcal{N} \operatorname{starting in} \langle \vec{\ell_0}, \nu_0 \rangle, t_0$ $\forall\,t\in\mathsf{Time}, \langle\vec{\ell},\nu\rangle\in\mathit{Conf}:\\ t_0\leq t\wedge\langle\vec{\ell},\nu\rangle\in\xi(t) \implies \langle\vec{\ell},\nu\rangle,t\models$ term

Example: $\exists \Box \varphi$

Satisfaction of Uppaal-Logic by Configurations

- Always finally:
 - $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \forall \Diamond term$ iff $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \not\models \exists \Box \neg term$
- Always globally:
 - $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \forall \Box \ term$ iff $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \not\models \exists \Diamond \neg term$

- 15 - 2014-07-24 - Sutl -

26/43

Satisfaction of Uppaal-Logic by Configurations

Leads to:

15 - 2014-07-24 - Sutl -

Satisfaction of Uppaal-Logic by Networks

 \bullet We write $\mathcal{N} \models \textit{e-formula}$ if and only if

for some
$$\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models e\text{-}formula,$$
 (1)

and $\mathcal{N} \models a\text{-}formula$ if and only if

for all
$$\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models a\text{-}formula,$$
 (2)

where C_{ini} are the initial configurations of $\mathcal{T}_e(\mathcal{N}).$

- If $C_{ini} = \emptyset$, (1) is a contradiction and (2) is a tautology.
- If $C_{ini} \neq \emptyset$, then

- 15 - 2014-07-24 - Sutl -

$$\mathcal{N} \models F$$
 if and only if $\langle \vec{\ell}_{ini}, \nu_{ini} \rangle, 0 \models F$.

28/43

Example

2014-07-24 - Sutl -

Example

- 15 - 2014-07-24 - Sutl -

29/43

Example

- $\mathcal{N} \models \exists \Diamond \mathcal{L}.bright$?
- $\mathcal{N} \models \exists \Box \mathcal{L}.bright$?
- $\mathcal{N} \models \exists \Box \mathcal{L}.off$?
- $\mathcal{N} \models \forall \Diamond \mathcal{L}.light$?
- $\mathcal{N} \models \forall \Box \mathcal{L}.bright \implies x \geq 3$?
- $\bullet \; \mathcal{N} \models \mathcal{L}.\textit{bright} \longrightarrow \mathcal{L}.\textit{off?}$

- 15 - 2014-07-24 - Sutl -

Observer-based Automatic Verification of DC Properties for TA

– 15 – 2014-07-24 – main –

30/43

Model-Checking DC Properties with Uppaal

N 1107 = 30 04. ba

15 - 2014-07-24 - Sdcvintro -

Model-Checking DC Properties with Uppaal

- **First Question**: what is the "\=" here?
- Second Question: what kinds of DC formulae can we check with Uppaal?
 - Clear: Not every DC formula. (Otherwise contradicting undecidability results.)
 - Quite clear: $F = \Box \lceil \mathsf{off} \rceil$ or $F = \neg \lozenge \lceil \mathsf{light} \rceil$ (Use Uppaal's fragment of TCTL, something like $\forall \Box$ off, but not exactly (see later).)
 - Maybe: $F = \ell > 5 \implies \lozenge[\mathsf{off}]^5$
 - Not so clear: $F = \neg \lozenge(\lceil \mathsf{bright} \rceil; \lceil \mathsf{light} \rceil)$

31/43

Testable DC Properties

- 15 - 2014-07-24 - Sdcvintro -

Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) A_F exists such that for all networks $\mathcal{N} = \mathcal{C}(A_1, \ldots, A_n)$ it holds that

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

33/43

Untestable DC Formulae

"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is \mathcal{A}_F such that, for all networks \mathcal{N} , we have

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Assume the number of clocks in \mathcal{A}_F is $n \in \mathbb{N}_0$.

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_A := 1$
- $t_B^i := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \dots, n+1$
- $t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[\text{ for } i = 1, \dots, n+1$ with $t_C^i t_B^i \neq 1 \text{ for } 1 \leq i \leq n+1.$

Example: n=3

- 15 - 2014-07-24 - Sdctest

35/43

Untestable DC Formulae Cont'd

Example: n=3

- ullet The shown interpretation ${\mathcal I}$ satisfies **assumption** of property.
- It has n+1 candidates to satisfy **commitment**.
- ullet By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Because n=3, A_F can not save all n+1 time points t_B^i .
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$

Untestable DC Formulae Cont'd

Example: n=3

 $A_{\mathcal{I}_0}^{1} \\ B_{\mathcal{I}_0}^{1} \\ C_{\mathcal{I}_0}^{1} \\ 0 \\ 1 \ t_B^1 \ t_B^2 \ t_B^3 \ t_B^4 \ 2t_C^1 \ t_C^2 \ t_C^3 \ t_C^4 \ 3 \ \mathsf{Time}$

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- \bullet Modify the computation to \mathcal{I}' such that $t_C^{i_0} := t_B^{i_0} + 1.$
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: \mathcal{A}_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. Contradiction.

37/43

Testable DC Formulae

Theorem 6.4. DC implementables are testable.

• Initialisation:

 $\lceil \rceil \vee \lceil \pi \rceil$; true

Sequencing:

 $\lceil \pi \rceil \longrightarrow \lceil \pi \vee \pi_1 \vee \cdots \vee \pi_n \rceil$

Progress:

 $\lceil \pi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$

• Synchronisation:

 $\lceil \pi \wedge \varphi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$

Bounded Stability:

 $\lceil \neg \pi \rceil$; $\lceil \pi \land \varphi \rceil \xrightarrow{\leq \theta} \lceil \pi \lor \pi_1 \lor \dots \lor \pi_n \rceil$

• Unbounded Stability:

 $\lceil \neg \pi \rceil$; $\lceil \pi \land \varphi \rceil \longrightarrow \lceil \pi \lor \pi_1 \lor \cdots \lor \pi_n \rceil$

Bounded initial stability:

 $\lceil \pi \wedge \varphi \rceil \xrightarrow{\leq \theta}_0 \lceil \pi \vee \pi_1 \vee \dots \vee \pi_n \rceil$

Unbounded initial stability:

 $[\pi \wedge \varphi] \longrightarrow_0 [\pi \vee \pi_1 \vee \cdots \vee \pi_n]$

Proof Sketch:

- ullet For each implementable F, construct ${\cal A}_F$.
- Prove that A_F is a test automaton.

Proof of Theorem 6.4: Preliminaries

• **Note**: DC does not refer to communication between TA in the network, but only to data variables and locations.

Example:

- 15 - 2014-07-24 - Sdctest -

by

$$\Diamond(\lceil v=0 \rceil; \lceil v=1 \rceil)$$

- **Recall**: transitions of TA are only triggered by syncronisation, not by changes of data-variables.
- **Approach**: have auxiliary step action.

Technically, replace each

39/43

Proof of Theorem 6.4: Sketch

• Example: $\lceil \pi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$

Definition 6.5.

 A counterexample formula (CE for short) is a DC formula of the form:

$$true$$
; $(\lceil \pi_1 \rceil \land \ell \in I_1)$; ...; $(\lceil \pi_k \rceil \land \ell \in I_k)$; $true$

where for $1 \leq i \leq k$,

- π_i are state assertions,
- ullet I_i are non-empty, and open, half-open, or closed time intervals of the form
 - (b,e) or [b,e) with $b\in\mathbb{Q}^+_0$ and $e\in\mathbb{Q}^+_0$ $\dot{\cup}$ $\{\infty\}$,
 - (b,e] or [b,e] with $b,e \in \mathbb{Q}_0^+$.

 (b, ∞) and $[b, \infty)$ denote unbounded sets.

• Let F be a DC formula. A DC formula F_{CE} is called **counterexample formula for** F if $\models F \iff \neg(F_{CE})$ holds.

41/43

Counterexample Formulae

Definition 6.5.

 A counterexample formula (CE for short) is a DC formula of the form:

true;
$$(\lceil \pi_1 \rceil \land \ell \in I_1)$$
; ...; $(\lceil \pi_k \rceil \land \ell \in I_k)$; true

where for $1 \leq i \leq k$,

- π_i are state assertions,
- ullet I_i are non-empty, and open, half-open, or closed time intervals of the form
 - (b,e) or [b,e) with $b\in\mathbb{Q}^+_0$ and $e\in\mathbb{Q}^+_0$ $\dot{\cup}$ $\{\infty\}$,
 - (b,e] or [b,e] with $b,e\in\mathbb{Q}_0^+$.

 (b,∞) and $[b,\infty)$ denote unbounded sets.

• Let F be a DC formula. A DC formula F_{CE} is called **counterexample formula for** F if $\models F \iff \neg(F_{CE})$ holds.

15 - 2014-07-24 - Sdctest -

References

- 15 - 2014-07-24 - main -

42/43

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

15 - 2014-07-24 - main -