- 04 - 2014-05-15 - main -

Real-Time Systems

Lecture 04: Duration Calculus II

2014-05-15

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

Started DC Syntax and Semantics: Symbols, State Assertions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus terms and formulae.

Content:

- Duration Calculus Formulae
- Duration Calculus Abbreviations
- Satisfiability, Realisability, Validity

Duration Calculus Cont'd

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\, xullet F_1\mid F_1$$
 ; F_2

(v) **Abbreviations:**

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Remark 2.5. The semantics $\mathcal{I}[\![\theta]\!]$ of a term is insensitive against changes of the interpretation \mathcal{I} at individual time points.

Remark 2.6. The semantics $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ of a **rigid** term does not depend on the interval [b,e].

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\,xullet F_1\mid F_1$$
 ; F_2

(v) Abbreviations:

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Formulae: Syntax

The set of DC formulae is defined by the following grammar:

$$F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1$$
; F_2

where p is a predicate symbol, θ_i a term, x a global variable.

- chop operator: ';'
- ullet atomic formula: $p(heta_1,\dots, heta_n)$
- rigid formula: all terms are rigid
- chop free: ';' doesn't occur
- usual notion of free and bound (global) variables
- Note: quantification only over (first-order) global variables, not over (second-order) state variables.

Formulae: Priority Groups

 To avoid parentheses, we define the following five priority groups from highest to lowest priority:

- ¬
- ;
- \(\), \(\)
- ullet \Longrightarrow , \Longleftrightarrow
- ∃, ∀

(negation)

(chop)

(and/or)

(implication/equivalence)

(quantifiers)

Examples:

- ullet $\neg F$; $F \lor H$
- $\forall x \bullet F \land G$

14 - 2014-05-15 - Sdcform

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Examples: $F := (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z), \quad \theta_1 := \ell, \quad \theta_2 := \ell + z,$

- $F[x := \theta_1] = (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z)$
- $F[x := \theta_2] = (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z)$

04 - 2014-05-15 - Sdcform

Formulae: Semantics

The semantics of a formula is a function

$$\mathcal{I}[\![F]\!]:\mathsf{Val}\times\mathsf{Intv}\to\{\mathsf{tt},\mathsf{ff}\}$$

i.e. $\mathcal{I}[\![F]\!](\mathcal{V},[b,e])$ is the truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval [b,e].

• This value is defined **inductively** on the structure of *F*:

$$\mathcal{I}\llbracket p(\theta_1,\ldots,\theta_n) \rrbracket (\mathcal{V},[b,e]) = \hat{p}(\mathcal{I}\llbracket \theta_1 \rrbracket (\mathcal{V},[b,e]),\ldots,\mathcal{I}\llbracket \theta_n \rrbracket (\mathcal{V},[b,e])),$$

$$\mathcal{I}\llbracket \neg F_1 \rrbracket (\mathcal{V},[b,e]) = \mathsf{tt} \text{ iff } \mathcal{I}\llbracket F_1 \rrbracket (\mathcal{V},[b,e]) = \mathsf{ff},$$

$$\mathcal{I}\llbracket F_1 \wedge F_2 \rrbracket (\mathcal{V},[b,e]) = \mathsf{tt} \text{ iff } \mathcal{I}\llbracket F_1 \rrbracket (\mathcal{V},[b,e]) = \mathcal{I}\llbracket F_2 \rrbracket (\mathcal{V},[b,e]) = \mathsf{tt},$$

$$\mathcal{I}\llbracket \forall x \bullet F_1 \rrbracket (\mathcal{V},[b,e]) = \mathsf{tt} \text{ iff for all } a \in \mathbb{R},$$

$$\mathcal{I}\llbracket F_1 \llbracket x := a \rrbracket \rrbracket (\mathcal{V},[b,e]) = \mathsf{tt}$$

$$\mathcal{I}\llbracket F_1 \llbracket x := a \rrbracket = \mathsf{ff} \text{ there is an } m \in [b,e] \text{ such that}$$

Formulae: Example

$$F:=\int L=0$$
 ; $\int L=1$

• $\mathcal{I}[F](\mathcal{V}, [0, 2]) =$

Formulae: Remarks

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b,e] \in \mathsf{Intv}$.

• If F is rigid, then

$$\forall [b',e'] \in \mathsf{Intv} : \mathcal{I}\llbracket F \rrbracket(\mathcal{V},[b,e]) = \mathcal{I}\llbracket F \rrbracket(\mathcal{V},[b',e']).$$

• If F is **chop-free** or θ is **rigid**, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

Substitution Lemma

Lemma 2.11. [Substitution]

Consider a formula F, a global variable x, and a term θ such that F is **chop-free** or θ is **rigid**.

Then for all interpretations \mathcal{I} , valuations \mathcal{V} , and intervals [b,e],

$$\mathcal{I}[\![F[x := \theta]]\!](\mathcal{V}, [b, e]) = \mathcal{I}[\![F]\!](\mathcal{V}[x := a], [b, e])$$

where $a = \mathcal{I}[\![\theta]\!](\mathcal{V}, [b, e])$.

ullet $F:=\ell=x$; $\ell=x \implies \ell=2\cdot x$, $\theta:=\ell$

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\,xullet F_1\mid F_1$$
 ; F_2

(v) **Abbreviations:**

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Duration Calculus Abbreviations

Abbreviations

$$\bullet \quad \square := \ell = 0$$

•
$$\lceil P \rceil := \int P = \ell \wedge \ell > 0$$

•
$$\lceil P \rceil^t := \lceil P \rceil \land \ell = t$$

•
$$\lceil P \rceil^{\leq t} := \lceil P \rceil \land \ell \leq t$$

- $\Diamond F := true \; ; \; F \; ; \; true$
- $\Box F := \neg \Diamond \neg F$

(point interval)

(almost everywhere)

(for time t)

(up to time t)

(for some subinterval)

(for all subintervals)

Abbreviations: Examples


```
\mathcal{I} \int L = 0
                                                                               [0,2] ) =
\mathcal{I} \int L = 1
                                                                  [(\mathcal{V}, [2, 6])] =
\mathcal{I} \llbracket \int L = 0 ; \int L = 1
                                                                 [(\mathcal{V}, [0, 6])] =
         \lceil \neg L \rceil
                                                                  [(\mathcal{V}, [0, 2])] =
                                                                  [(\mathcal{V}, [2,3]) =
                                                                 \mathbb{I}(\mathcal{V}, [0, 3]) =
\mathcal{I} \llbracket \quad \lceil \neg L \rceil ; \lceil L \rceil
                                                           [(\mathcal{V}, [0, 6])] =
\mathcal{I} \llbracket \quad \lceil \neg L \rceil ; \lceil L \rceil ; \lceil \neg L \rceil
\mathcal{I} \llbracket \quad \Diamond \lceil L \rceil
                                                                  [(\mathcal{V}, [0, 6])] =
                                                                  [(\mathcal{V}, [0, 6])] =
\mathcal{I} \llbracket \quad \Diamond \lceil \neg L \rceil
\mathcal{I} \Diamond \lceil \neg L \rceil^2
                                                                  [V, [0, 6]] =
\mathcal{I} \Diamond [\neg L]^2; [\neg L]^1; [\neg L]^3 [(\mathcal{V}, [0, 6])
```

Formulae are evaluated in an (implicitly given) interval.

Strangest operators:

- almost everywhere Example: $\lceil G \rceil$ (Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)
- **chop** Example: $(\lceil \neg I \rceil; \lceil I \rceil; \lceil \neg I \rceil) \implies \ell \geq 1$ (Ignition phases last at least one time unit.)
- integral Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)

04 - 2014-05-15 - Sdcsat -

Validity, Satisfiability, Realisability

•
$$\mathcal{I}, \mathcal{V}, [b, e] \models F$$
 ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff

$$\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \mathsf{tt}.$$

04 - 2014-05-15 - Sdcsat -

Validity, Satisfiability, Realisability

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[F](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[F](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.

Let $\mathcal I$ be an interpretation, $\mathcal V$ a valuation, [b,e] an interval, and F a DC formula.

• $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff

$$\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \mathsf{tt}.$$

- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.

$$orall \left[b,e
ight] \in \mathsf{Intv}: \mathcal{I}, \mathcal{V}, \left[b,e
ight] \models F$$
 .

- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ (" \mathcal{I} realises F") iff

$$\forall \mathcal{V} \in \mathsf{Val}: \mathcal{I}, \mathcal{V} \models F.$$

Let $\mathcal I$ be an interpretation, $\mathcal V$ a valuation, [b,e] an interval, and F a DC formula.

•
$$\mathcal{I}, \mathcal{V}, [b, e] \models F$$
 ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff

$$\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \mathsf{tt}.$$

• F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].

•
$$\mathcal{I}, \mathcal{V} \models F$$
 (" \mathcal{I} and \mathcal{V} realise F ") iff $\forall [b, e] \in Intv : \mathcal{I}, \mathcal{V}, [b, e] \models F$.

$$otaclocal [b,e] \in \mathsf{Intv}: \mathcal{I}, \mathcal{V}, [b,e] \models F.$$

• F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.

•
$$\mathcal{I} \models F$$
 (" \mathcal{I} realises F ") iff

$$\forall \mathcal{V} \in \mathsf{Val}: \mathcal{I}, \mathcal{V} \models F$$
.

• $\models F$ ("F is valid") iff

 \forall interpretation $\mathcal{I}: \mathcal{I} \models F$.

04 - 2014-05-15 - Sdcsat -

Validity vs. Satisfiability vs. Realisability

Remark 2.13. For all DC formulae F,

- F is satisfiable iff $\neg F$ is not valid, F is valid iff $\neg F$ is not satisfiable.
- If F is valid then F is realisable, but not vice versa.
- If F is realisable then F is satisfiable, but not vice versa.

Examples: Valid? Realisable? Satisfiable?

- $\ell \geq 0$
- $\ell = \int 1$
- $\ell=30 \iff \ell=10$; $\ell=20$
- $((F;G);H) \iff (F;(G;H))$

- $\int L \leq x$
- $\ell=2$

Initial Values

• $\mathcal{I}, \mathcal{V} \models_0 F$ (" \mathcal{I} and \mathcal{V} realise F from 0") iff

$$\forall t \in \mathsf{Time} : \mathcal{I}, \mathcal{V}, [0, t] \models F.$$

• F is called **realisable from** 0 iff some \mathcal{I} and \mathcal{V} realise F from 0.

- Intervals of the form [0, t] are called **initial intervals**.
- $\mathcal{I} \models_0 F$ (" \mathcal{I} realises F from 0") iff

$$\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models_0 F.$$

• $\models_0 F$ ("F is valid from 0") iff

$$\forall$$
 interpretation $\mathcal{I}: \mathcal{I} \models_0 F$.

04 - 2014-05-15 - Sdcsat -

Initial or not Initial...

For all interpretations \mathcal{I} , valuations \mathcal{V} , and DC formulae F,

- (i) $\mathcal{I}, \mathcal{V} \models F \text{ implies } \mathcal{I}, \mathcal{V} \models_0 F$,
- (ii) if F is realisable then F is realisable from 0, but not vice versa,
- (iii) F is valid iff F is valid from 0.

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

Methodology: Ideal World...

- (i) Choose a collection of **observables** 'Obs'.
- (ii) Provide the **requirement/specification** 'Spec' as a conjunction of DC formulae (over 'Obs').
- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
- (iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

 $\models_0 \mathsf{Ctrl} \implies \mathsf{Spec}.$

Gas Burner Revisited

- (i) Choose observables:
 - two boolean observables G and F (i.e. Obs = $\{G,F\}$, $\mathcal{D}(G)=\mathcal{D}(F)=\{0,1\}$)
 - G = 1: gas valve open
 - F=1: have flame
 - define $L := G \land \neg F$ (leakage)
- (ii) Provide the requirement:

04 - 2014-05-15 - Sdcgasburner

 $\operatorname{Req} : \iff \Box (\ell \geq 60 \implies 20 \cdot \int L \leq \ell)$

(output)

(input)

Gas Burner Revisited

- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:
 - Des-1: $\iff \Box(\lceil L \rceil \implies \ell \leq 1)$
 - Des-2: $\iff \Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$
- (iv) Prove correctness:
 - We want (or do we want $\models_0...?$):

$$\models (\mathsf{Des}\text{-}1 \land \mathsf{Des}\text{-}2 \implies \mathsf{Req})$$
 (Thm. 2.16)

Gas Burner Revisited

- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:
 - Des-1: $\iff \Box(\lceil L \rceil \implies \ell \le 1)$
 - Des-2: $\iff \Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$
- (iv) Prove correctness:
 - We want (or do we want $\models_0...?$):

$$\models (\mathsf{Des}\text{-}1 \land \mathsf{Des}\text{-}2 \implies \mathsf{Req}) \tag{\mathsf{Thm. 2.16}}$$

We do show

$$\models \text{Req-1} \implies \text{Req}$$
 (Lem. 2.17)

with the simplified requirement

Req-1 :=
$$\Box(\ell \leq 30 \implies \int L \leq 1)$$
,

Gas Burner Revisited: Lemma 2.17

Claim:

$$\models \underbrace{\Box(\ell \leq 30 \implies \int L \leq 1)}_{\mathsf{Req-1}} \implies \underbrace{\Box(\ell \geq 60 \implies 20 \cdot \int L \leq \ell)}_{\mathsf{Req}}$$

Proof:

04 – 2014-05-15 – Sdcgasburner -

Gas Burner Revisited: Lemma 2.17

Claim:

$$\models \underbrace{\Box(\ell \leq 30 \implies \int L \leq 1)}_{\text{Req-1}} \implies \underbrace{\Box(\ell \geq 60 \implies 20 \cdot \int L \leq \ell)}_{\text{Req}}$$

Proof:

Assume 'Req-1'.

4 - 2014-05-15 - Sdegashurner -

Gas Burner Revisited: Lemma 2.17

Claim:

$$\models \underbrace{\Box(\ell \leq 30 \implies \int L \leq 1)}_{\text{Req-1}} \implies \underbrace{\Box(\ell \geq 60 \implies 20 \cdot \int L \leq \ell)}_{\text{Req}}$$

Proof:

- Assume 'Req-1'.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and [b,e] an interval with $e-b \geq 60$.

Gas Burner Revisited: Lemma 2.17

Claim:

$$\models \underbrace{\Box(\ell \leq 30 \implies \int L \leq 1)}_{\text{Req-1}} \implies \underbrace{\Box(\ell \geq 60 \implies 20 \cdot \int L \leq \ell)}_{\text{Req}}$$

Proof:

- Assume 'Req-1'.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and [b,e] an interval with $e-b \geq 60$.
- Show " $20 \cdot \int L \leq \ell$ ", i.e.

$$\mathcal{I}[20 \cdot \int L \leq \ell](\mathcal{V}, [b, e]) = \mathsf{tt}$$

i.e.

$$\hat{20} \cdot \int_{b}^{e} L_{\mathcal{I}}(t) dt \leq (e - b)$$

Sdcgasburner

Gas Burner Revisited: Lemma 2.17
$$= \Box(\ell \leq 30 \implies \int L \leq 1)$$

$$\Rightarrow \Box(\ell \geq 60 \implies 20 \cdot \int L \leq \ell)$$

• Set $n:=\lceil \frac{e-b}{30} \rceil$, i.e. $n\in \mathbb{N}$ with $n-1<\frac{e-b}{30}\leq n$, and split the interval

04 – 2014-05-15 – Sdcgasburner –

Some Laws of the DC Integral Operator

Theorem 2.18.

For all state assertions P and all real numbers $r_1, r_2 \in \mathbb{R}$,

(i)
$$\models \int P \leq \ell$$
,

(ii)
$$\models (\int P = r_1)$$
; $(\int P = r_2) \implies \int P = r_1 + r_2$,

(iii)
$$\models \lceil \neg P \rceil \implies \int P = 0$$
,

(iv)
$$\models [] \implies \int P = 0$$
.

4 - 2014-05-15 - Sdcgasburner

Gas Burner Revisited: Lemma 2.18

Claim:

$$\models (\underbrace{\Box(\lceil L \rceil \implies \ell \le 1)}_{\text{Des-1}} \land \underbrace{\Box(\lceil L \rceil \; ; \lceil \neg L \rceil \; ; \lceil L \rceil \implies \ell > 30)}_{\text{Des-2}}) \implies \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\text{Req-1}}$$

Proof:

Gas Burner Revisited: Lemma 2. (i) $\models \int P \leq \ell$, (iv) $\models \bigcap \Rightarrow \int P = 0$ (ii) $\models (\int P = r_1)$; $(\int P = r_2)$ $\implies \int P = r_1 + r_2$, (iii) $\models \lceil \neg P \rceil \implies \int P = 0$,

Claim:

$$\models (\underbrace{\Box(\lceil L \rceil \implies \ell \le 1)}_{\text{Des-1}} \land \underbrace{\Box(\lceil L \rceil \text{; } \lceil \neg L \rceil \text{; } \lceil L \rceil \implies \ell > 30)}_{\text{Des-2}}) \implies \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\text{Req-1}}$$

Proof:

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.