— 15 — 2015-07-09 — main —

Softwaretechnik / Software-Engineering

Lecture 15: Software Quality Assurance

2015-07-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents of the Block “Quality Assurance”

— 15 — 2015-07-09 — Scontents —

| dlud L 1. 204,

(i) Introduction and Vocabulary e EHEn T 1. 234,
. Devel L 2. 27.4,

o correctness illustrated evelopment L 3 304

e vocabulary: fault, error, failure Process, Metrics L 4 45,

o three basic approaches T2 75,

L 5. 115,

(ii) Formal Verification - 145,
R . t L 6: 18.5.,

e Hoare calculus eq.uwen)en S L 7: 215,

o Verifying C Compiler (VCC) Engineering - 255,

e over- / under-approximations - 28.5,,

T3 1.6.,

iii) (Systematic) Tests - 4.6.,
() (y) L 8 86
e systematic test vs. experiment L 9 116,

o classification of test procedures L10: 15.6.,

o model-based testing -Lrllllz ;gg

o glass-box tests: coverage measures Architecture & L 1o, 25:6::

(iv) Runtime Verification Design, Software L13: 296,
) Modelling L14: 27,

(v) Review T5 67,
. L15: 9.7
(vi) Concluding Discussion Quality Assurance L16: 137
o Dependability Invited Talks L17: 16.7.,

T 6: 20.7.,

Wrap-Up L18: 23.7.,

Mo
Do
Mo
Do
Mo
Do
Mo
Do
Mo
Do
Mo
Do
Mo
Do

., Mo

Do
Mo
Do
Mo

Mo
Do
Mo

., Do

Mo
Do
Mo
Do

Contents & Goals

— 15 — 2015-07-09 — Sprelim —

— 15 — 2015-07-09 — main —

Last Lecture:

o Completed the block “Architecture & Design”

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.

When do we call a software correct?

What is fault, error, failure? How are they related?

What is febr:;} and partial correctness?

What is a Hoare triple (or correctness formula)?

Is this program (partially) correct?

Prove the (partial) correctness of this WHILE-program using PD.

What can we conclude from the outcome of tools like VCC?

Content:

Introduction, Vocabulary

WHILE-program semantics, partial & total correctness
Correctness proofs with the calculus PD.

The Verifying C Compiler (VCC)

Introduction

Recall: Formal Soffmvelopment

Requirements

Development
Process/
? Project
- : Management
Design
[] = {(M. Ty .C. [1), (C.Te. M. [-]1)} : > ?
s ?
% Implementation
:\) 5/54
Recall: Formal Soffmvelopment
o Oy
Requirements
[] = {(M.C,[-10), (C-M,[-]u)} ?
Development
A Process/

— 15 — 2015-07-09 — Sverifvalid —

validation The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
requirements. Contrast with: verification. IEEE 610.12 (1990)

A =
verification

(1) The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at
the start of that phase. Contrast with: validation.

(2) Formal proof of program correctness. IEEE 610.12 (1990)

validation The process of evaluating a system or component during or at

Recall: FO rmal SOMVeZOPm the end of the development process to determine whether it satisfies specified

requirements. Contrast with: verification, IEEE 610.12 (1990)

— 15 — 2015-07-09 — Sverifvalid —

o O Software!
verification

(1) The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at
the start of that phase. Contrast with: validation.

(2) Formal proof of program correctness IEEE 610.12 (1990)

Requirements

[] = {(M.C,[-10), (C.-M,[-]u)} ?

Development
Process/
? Project

. Management
Design

[#2] = {(M.Tar.C, []1), (CTe- M. [-]1)} ?

5/54

Big Questions

— 15 — 2015-07-09 — Svintro —

i

Analyst

Is the implementation “correct”? And “correct” in what sense?

6/54

Back To Lecture No. 1

— 15 — 2015-07-09 — Svintro —

Definition. A software specification is a finite description . of a (possibly

infinite) set [.%] of softwares, i.e.

[T ={(S0[-10)s - 3

The (possibly partial) function [-] : . — [.’] is called interpretation of .%.

We define:

nor not correct — it’s just some software then.

Correctness Illustrated

— 15 — 2015-07-09 — Svintro —

S =(M.C) or (C.M)

software doing software doing neither software doing

(at most) M.C M.C nlor CM (at most)

Software S is correct wrt. software specification . if and only if (S,[-]) € [-].

e Note: no specification, no correctness. Without specification, S is neither correct

° o |
S Geldautomat S
—

C.M

all imaginable

< softwares
softwares which

D consider all
necessary inputs

EREEREAEREN ==

/ AN
N
/ \ N
/ \ N
/ \
AN
/ \ S
/ / \ > N
(= x M ‘\ (2 x Ay N N| (5 x Ay
/ N
/ \ N

final implementa-
tion — is it one of
the allowed ones? g,

Vocabulary

software quality assurance — See: quality assurance. IEEE 610.12 (1990)

quality assurance — (1) A planned and systematic pattern of all actions

necessary to provide adequate confidence that an item or product conforms to

established technical requirements.

(2) A set of activities designed to evaluate the process by which products are
~

developed or manufactured. IEEE 610.12 (1990)

Note: in order to trust a product, it can be built well, or proven to be good
(at best: both) — both is QA in the sense of (1).

— 15 — 2015-07-09 — Svintro —

Concepts of Software Quality Assurance

software quality

assurance
_— / ~
organisational analytic constructive
. 7 T~ constructive
project software

L. software

management examination ; :
/ / \ engineering

non-mech. semi-mech. mechanical
/ / \ e.g. code
examination by comp. aided examination generation
humans human exam. with computer

|
analyse exe(l:ute prove

10/54

i dynamic ~N
e.g. static . formal

. . manual . . . checking e s

inspection review interactive checking verification
| proof (test)
° prover / \
E
| check . quantitative
o . consistency .
N against examina-
< checks .
2 rules tion
g‘ (Ludewig and Lichter, 2013)
=
|

Fault, Error, Failure

fault — abnormal condition that can cause an element or an item to fail.

Note: Permanent, intermittent and transient faults (especially soft-errors) are considered.

Note: An intermittent fault occurs time and time again, then disappears. This type of
fault can occur when a component is on the verge of breaking down or, for example, due
to a glitch in a switch. Some systematic faults (e.g. timing marginalities) could lead to
intermittent faults. 1SO 26262 (2011)

error — discrepancy between a computed, observed or measured value or condition,
and the true, specified, or theoretically correct value or condition.

Note: An error can arise as a result of unforeseen operating conditions or due to a fault
within the system, subsystem or, component being considered.

Note: A fault can manifest itself as an error within the considered element and the error

can ultimately cause a failure. 1SO 26262 (2011)
I
& failure — termination of the ability of an element, to perform a function as required.
|
§ Note: Incorrect specification is a source of failure. 1SO 26262 (2011)
. We want to avoid failures, thus we try to detect faults, e.g. by looking for errors.
n 11/54
Back to the Illlustration T——
S =(M.C) or (C.M)
software doing software doing neither software doing
(at most) M.C M.C nor C.M (at most) C.M
all imaginable
<~ softwares
softwares which
consider all
necessary inputs
|
|
8 = =]‘ = ="|'] compile final implementa-
; SETHEEEEIEL = o= oot
i the allowed ones? 19,

So, What Do We Do?

— 15 — 2015-07-09 — Svintro —

If we are lucky, the requirement specification
is a constraint on computation paths.

LSC ‘buy_water' is such a software specification ..

/s] [Comvatoior] [Craeponst | [Dspemser] \
7 . T T \

»WATER

ater in stock

K

It denotes all controller softwares which “faithfully” sell water.

(Or which refuse to accept C50 coins, or block the ‘WATER’ button).

Formally

In pictures:

all computation
paths satisfying
‘buy_water’

[S] of one
acceptable
software S

e Then we can check correctness of a given software S
by examining its computation paths [S].

[buy_water] spec = {S | [S] satisfies ‘buy_water'}.

(% x A)*

-

Three Basic Directions

— 15 — 2015-07-09 — Svintro —

(% x A)®

all computation
paths satisfying
specification —_

(2 x A~

[S] of one not
acceptable
software S

1354

14/54

Three Basic Directions

. (Z x A
all computation

paths satisfying
specification ~__

! /
II,/
4‘OO Nl /

Reviewer

é review , [-1
: E]E]WE input —>D — output
2 Review Testing

|
T

Formal Verification

|

E

|

)

N

prove S = .¢,
conclude
151 € [#]

BRER
Formal Verification

14/54

15/54

Correctness Formulae (“Hoare Triples”)

e One style of requirements specifications: pre- and post-conditions
(on whole programs or on procedures).

o Let S be a program with states from 3 and let p and g be formulae
such that there is a satisfaction relation = C ¥ x {p,q}. comepuss Afmué/
Hoare faiple
"
e S is called partially correct wrt. p and ¢, denoted by = {p} S {q}, if and only if

V7T=0'02>0'1a—2>(72~--0'n_1a—">0'ﬁ€[[5ﬂ000 Ep = o.E¢
v
-]

(“if S terminates from a state satisfying p, then the final state of that computation satisfies ¢")

e Sis called totally correct wrt. p and ¢, denoted by .+ {p} S {q}, if and only if
e {p} S {q} (S is partially correct), and

I
T evmne[Slen’Ep = |n| € No
g (S terminates from all states satisfying p; length of paths: | - | : I — INo U { L }).
q
h
Example
Computing squares (of numbers 0,...,27).
e Pre-condition: p =0 < z < 27, post-condition: ¢ =y = 22
>
e Program Si: Loint y = x;
2y =(x—1) * x +y;
J P
=7 {p} S1 {a}, ot {p} S1 {&}
v
e Program Ss: Loint y = x; /o
2 int z; // uninitialised
>(3y =((x=1) x x+y)+ z;
= {p} Sz {a}, Fiot {0} S2 {a}
e Program Ss: 1oint y = x;
o, 2 = (x —1) * x + vy;
(‘k\\l\‘@’) 3 Lhilg (1);)m ’
v .
C E P} Ss {ah Fo {p} S5 {a} reves umiaates
T e Program Sy: 1oint y = x; }{
3 2 int z; // uninitialised Mo s
’é 3y =((x—=1) = x +y) + z;
))(4 while (z);
s BT ApY Sad{a}, Eio {p} S {a}
|

16/54

17/54

Deterministic Programs

Syntax:
S :=skip |u:=1t]|S1;S2 | if B then S; else S, fi | while B do S; do

where u is a variable, ¢ a type-compatible expression, B a Boolean expression.

Semantics: (is induced by the following transition relation)
(i) (skip, o) = (E, o)
(i) (u:=t,0) = (E, olu:=0c(®)])

(III) <Sl, 0'> — <SQ, T>
(S1; 8, o) = (S2; S, 1)

(iv) (if B then S; else S: fi, o) — (S1, 0), if 0 = B,

(v) (if B then S else S fi, o) — (S2, o), if 0 £ B,

(vi) (while B do S do, o) — (S;while B do S do, o), if o = B,
) (

(vii

while B do S do, o) — (E, o), if 0 [~ B,

FE denotes the empty program; defme]E; S]E é; E ELS_'_.I

Note: the first component of (S, o) is a program (structural operational semantics).
18/54

— 15 - 2015-07-09 — Spsq —

Computations of Deterministic Programs

Definition.

(i) A transition sequence of S (starting in o) is a finite or infinite sequence
<S, O'> = <So, O'0> — <Sl7 O'1> = 000

(that is, (S;, 0;) and (S;4+1, oit1) are in transition relation for all 7).

ii) A computation (path) of S (starting in o) is a maximal transition se-
g
quence of S (starting in), i.e. infinite or not extendible.

(iii) A computation of S is said to
a) terminate in 7 if and only if it is finite and ends with (E, 7),
b) diverge if and only if it is infinite. .S can diverge from o if and only

if there is a diverging computation starting in o.

(iv) We use —* to denote the transitive, reflexive closure of —.

Lemma. For each deterministic program S and each state o,
there is exactly one computation of S which starts in o.

19/54

— 15 - 2015-07-09 — Spsq —

(i) (skip, o) — (E, o)
(i) (u:=t,0) = (B, olu:=o(t)])
(i) (S1, o) = (S2, T)

(Sl;S, O’> — (SQ;S, T>
(iv) (if B then S; else S; fi, o
(v) (if B then S; else S fi, o
(vi) (while B do S do, o) — (S
(vii) (while B do S do, o)

Example

)
)

—
—
W

(
(
(
(

—
—

hile B do S do, o), if o | B,
(B, o),

E;S=S;E=S

(S1, o), if o = B,
(S2, o), if o = B,

if o b~ B,

Consider program S = a

:=1:a[l] :=0;while a[z] #0do z:=x+1 do

and a state o with ¢ =2 = 0.

20/54

UH: 20/54
Example (i) (skip, o) — (E, o) E;S=S;E=S
_— (i) (u:=t, 0) = (B, olu:=o(t)])
(iiy {51 0) = (52, 7) °
<Sl;Sa U> - (S27S7 T>
(iv) (if B then S; else S; fi, o) — (S1, o), if o = B,
(v) (if B then S; else S fi, o) — (52, o), if 0 £ B,
(vi) (while B do S do, o) — (S;while B do S do, o), if o = B,
(vii) (while B do S do, o) — (E, o), if o |~ B,
Ay
<4 — —
Consider program S Ella[O] := 1;a[l] := 0; while a[r] # 0 do x := x + 1 do
and a state o with o Ex =0. g
(), Ge) .
(S,0) 25 KE; S, 6] alo)=1] S

Example (i) (skip, o) = (E, o) BS=SE=S

(i) (u:=t,0) = (B, olu:=o(t)])
(i) (S1, o) = (S2, T)

(Sl;S, O’> — (SQ;S7 T>
(iv) (if B then S; else S; fi, o) — (S1, o), if 0 = B,
(v) (if B then S; else S fi, o) — (52, o), if 0 £ B,
(vi) (while B do S do, o) — (S;w
(vii) (while B do S do, o) — (E, o), if o [~ B,

—
—

hile B do S do, o), if o | B,

Consider program S = a[0] := 1;a[1] := 0; while a[z] #0 do z :=z + 1 do
. AN~
and a state o with 0 =2 = 0.

(S, o) (0,9, (a[1] := 0; while a[z] # 0 do = := z + 1 do, o[a]0] :=1])

UH: 20/54
Example (i) (skip, o) = (E, o) BiS=SE=S
(i) (u:=t, 0) = (B, olu:=o(t)])
(iii) <Sl, 0'> — (SQ, ‘r)
<Sl;sa U> - <S27S7 T>
(iv) (if B then S; else Sz i, o) — (S1, o), if o E B,
(v) (if B then S; else S fi, o) — (52, o), if 0 £ B,
(vi) (while B do S do, o) — (S;while B do S do, o), if o = B,
(vii) (while B do S do, o) — (E, o), if o |~ B,
Consider program S = a[0] := 1; a[1] := 0; while a[z] #0 do z :=x + 1 do
and a state o with ¢ =2 = 0.
(8, o) U] .= 0; while az] £ 0 do @ := 2 + 1 do, o[a[0] := 1])
(), @), (while a[z] # 0 do z := x + 1 do, ¢’)
‘ L), (x :=x + 1;while az] #0 do z := z + 1 do, ¢')
- —_—
V“S’. S
© where ¢’ = o[a[0] := 1][a[1] := 0].

20/54

— 15 - 2015-07-09 — Spsq —

Example

(i) (skip, o) — (E, o)
(i) (u:=t,0) = (B, olu:=o(t)])
(i) (S1, o) = (S2, T)

(Sl;S, O’> — (SQ;S7 T>
(iv) (if B then S; else S> fi, o)
(v) (if B then S; else 5S> fi, o)
(vi) (while B do S do, o) — (S;
(vii) (while B do S do, o) — (E, o), if o [~ B,

— (S1, 0), if 0 = B,
— (S2, 0), if 0 £ B,
w

E;S=S;E=S

hile B do S do, o), if o | B,

Consider program S = a[0] := 1;a[1] := 0; while a[z] #0 do z :=z + 1 do
and a state o with 0 =2 = 0.

(s,

o)

(i1, (31i)
(i1, (i)

(v9)

(i), (i)

(a[1] := 0; while a[z] # 0 do = := z + 1 do, o[a]0] :=1])
(while a[z] # 0 do z := z + 1 do, o)

(x :=x + 1;while alz] #0 do z := z + 1 do, ¢')
(while a[z] # 0 do z:=x+ 1 do, o'[z :=1])

(B, o'z :=1]) s*

L_——-"r—-—’

= &'

1)[(1[1] !

Input/Output Semantics of Deterministic Programs

— 15 - 2015-07-09 — Spsq —

Definition.
Let S be a deterministic program.

(i) The semantics of partial correctness is the function

M[S]: T — 2%

with M[S](o) ={7]| (S, o) =* (E, 7)}.

(i) The semantics of total correctness is the function

Mtot[[S]] DY 22 U {J_}

with My, [S] (o) = M[S](c) U{L | S can diverge from o}.

L is an error state representing divergence.

Note: M,,[S](c) has exactly one element, M[S](c) at most one.

20/54

21/54

Correctness of Deterministic Programs

Definition.
(i) A correctness formula {p} S {q} holds in the sense of partial

correctness, denoted by = {pt S {q}, if and only if
MISIIPD) € [e [Trgs
We say S is partially correct wrt. p and gq.
(ii) A correctness formula {p} S {q} holds in the sense of total cor-
rectness, denoted by =4: {p} S {q}, if and only if

M SUIPD) € [l 455, T

We say S is totally correct wrt. p and q.

22/54

— 15 - 2015-07-09 — Spsq —

Example: Correctness

e By the previous example, we have shown
E{r=0} S{z=1}and i, {z=0} S {x =1}.
(because we only assumed o = x = 0 for the example, which is exactly the precondition.)

e We have also shown:

E{z=0} S {xr=1Aa[z] =0}.

e The following correctness formula for .S:
#—‘-ﬂ{x =2} S {true}.
(e.g., if o = ali] # 0 for all i > 2.)
e In the sense of partial correctness,
{x=2AVi>2eali] =1} S {false}

also holds.
23/54

— 15 - 2015-07-09 — Spsq —

Proof—System PD (for sequential, deterministic programs)

Axiom 1: Skip-Statement

{p} skip {p}

Axiom 2: Assignment

{plu =1} u:=1 {p}

Rule 3: Sequential Composition

{p} S {r},{r} S2 {q}

{p} S1; S2 {q}

Rule 4: Conditional Statement

{pA B} Si {g},{p A B} S2 {q},
{p} if B then S; else S; fi {¢}

Rule 5: While-Loop

{pn B} S {p}
{p} while B do S do {p A —B}

Rule 6: Consequence

p—pi,{pi} S{n}, a1 — ¢

25/54

{r} S {q}
|
&
|
2 Theorem. PD is correct (“sound”) and (relative) complete for partial correct-
S ness of deterministic programs, i.e. Fpp {p} S {q} if and only if = {p} S {q}.
S _Soveek
I \}
n — 24 /54
Substitution
In PD uses substitution of the form p[u := t].
(In formula p, replace all (free) occurences of (program or logical) variable u by term ¢.)
Usually straightforward, but indexed and bound variables need to be treated specially:
Expressions: Formulae:
. . t ,ifz=u . _
e plain variable: z[u :=t] = e boolean expression p = s:
z plu:=t] = s[u =t
e constant ¢: clu:=t] =c. e negation:
e constant op, terms s;: (=q)[u = t] = ~(qu = 1)
op(s1,...,sn)[u:=1] e conjunction etc.:
= op(sifu:=t,...,snfu:=1]). (gAT)[u:=t
o indexed variable, u plain = qlu:=t] Arfu:=t]
or u = blt1,...,tm] and a # b: e quantifier:
(a[s1y.. .y sn])u =t =al[s1u:=1],...,sn[u:=1t]]) Vz:q)u:=1t
. © indexed variable, u = alti, ..., tm]: =Vy:qlz = Yllu ==1]
g (als1, .-+, 8n])[u = 1] y fresh (not in ¢, t,u),
a =if A, sifu:=t]=t; thent same type as z.
é else a[si[u:=1t],...,spu:=1] fi
8: e conditional expression:
= if B then s; else s3 fiju := {]
o = if Blu:=t] then si[u:=1] else sa[u:=1t] fi
|

Example Proof

DIV =q:=0; r:=ux; WhilerZydoir::r—y; q:=q+1do
-—)

Sq S&
(The first (textually represented) program that has been formally verified (Hoare, 1969).

We want to prove =:K

Aa——
E{z>0Ay>0} DIV {q-y+r=zAr <y}

Note: writing a program S which satisfies this correctness formula =Q
is much easier if S may change = and y...

The proof needs a loop invariant, we choose (creative act!):
P=q-y+r=xzAr>0
R <

i We prove
2 e (1){x>0Ay >0} q:=0; r:=2 {P} and
2 S
5 e (Q{PAr>ytri=r—y; 2-q =q+ I {P}inPD, and
g o (BYPA-(r>y)—=q-y+r=xzAr <y “by hand”.
;’ —
n Q 26/54
Example Proo
z / e kR e A
B} S
(2 Glu=hu=t)) e S e A
{p} S {1}, {r} S: {q} . popu{p} S{a}a > g
) o s 5 1l b) S (o}

Assume:

e (1) {z>0Ay>0}q:=0; r:=x {P},

o 2){PAr2>ytg:=r—y; g:=qg+1{P} and

—=—
e B)PA-(r>y) =g y+r=czAr<uy.
e By rule (R5), we obtain, using (2), S
F{P} while r >y dot;::rfy; ¢:=q+1do {PA=(r>y)}
cadl,

27/54

Example Proof

(A1) {p} skip {p}

(A2) {plu =]} u:=1t {p}

{p} 51 {r} {r} 92 {q}

) =T 61 % (0}

(4) {P/\ B} 51 {q}:{p/\ ﬁB} S2 {(I}s
{p} if B then S: else S fi {q}

{pA B} S {p}
{p} while B do S do {p A —B}

(R5)

p—=pi,d{pi} S{a}, i — g
(R6) o} 5 {a}

Assume: =R S» T i B3
e (1){z>0Ay>0}q:=0; r:=x {P},

o Q){PAr>y}r:i=r—y; qi=q+1{P}, and
e B)PA-(r>y) g yt+tr=cAr<y.

rw K3
e By rule (R5), W%ain, using (2),

F{P}whiler>ydor:=r—y; g:=q+1do {PA-(r>y)}
4

e By rule (R3), we obtain, using (1),

7

.

&

27/54

{pA B} S {q},{p A B} S {q},

(R4) {p} if B then S; else S, fi {q}

{pA B} S {p}
{p} while B do S do {p A —B}

p—=pi,d{pi} S{a}, g — g
(R6) o} 5t}

z F{z>0Ay >0} DIV {PA—(r>y)}
| _——A/"
g e By rule (R6), we obtain, using (3)R
8 F{e>0Ay>0} DIV {qg-y+r=xAr <y}
Proof: (2
f () (A1) {p} skip {p}
(A2) {plu :=t]} u:=1t {p} (RS)
{p} S1 {r} {r} S2 {a}
(R3) {p} S1; S2 {q}
e P=q-y+r=xAr >0,
o 2: {PAr>y}tr:=r—vy; q:=q+1{P}
« t
o) ~A—
o {(g+1)-y+r=xAx>0} q:=q+1{P} by (A2),
t

28/54

Proof: (2
- (2
B} S
(2 Glu=u=16)) R S db pAE]
{p} S1 {r}, {r} S {q} p—pi,{pi} S{a}, a1 =g
) =T 61 % (0} (RO)) 5 {0}

e P=q-y+r=xAr >0,
o 2): {PAr>y}tri=r—y; g:=q+1{P}

-
o {(g4+1) - y+r=xAB>0} ¢g:=q+1 {P} by (A2),

N~ O O O

.
x A@®> 0} by (A2),
>

g+t yt+ oy =an(r—y) 20 r=r-y{lg+) y+r=
€ ¢ “ € “
5\’ 28/54
Proof: (2)
° : {p/\B} S1 {q}:{p/\"B} So {Q}a
(A1) {p} skip {p} (R4) {p} if B then S: else S fi {q}
B} S
(A2) {plu:= 1]} u:=t {p} (RS 73 whilc{epBA do} S (jﬁ}{p A =B}
{p} Si {r}, {r} Sz {q¢} p—pu{p} S{ata1 = ¢
) oy si 5 (@ &9 o} 5 1o}

e P=q-y+r=xzAr >0,
o 2: {PAr>y}tr:=r—vy; q:=q+1{P}

e {(g+1)-y+r=xzAxz>0}q:=q+1{P} by (A2),
e {lg+)-y+(r—y =azA(r—y) 20} ri=r—y{(g+1)-y+r=azAz >0} by (A2),

cllat)yt =y =zn(r—y) 20 ri=r—y; g:=g+1{P} by (R3),

e (2) by (R6), using N

~

PAr>y—=(@+1)-y+@r—y)=xA(r—y)>0.

28/54

— 15 - 2015-07-09 — Spsq —

Proof: (1)

(A1) {p} skip {p}

— 15 - 2015-07-09 — Spsq —

(A2) {plu =]} u:=1t {p}

{p} 51 {r} {r} 92 {q}

) =T 61 % (0}

{pA B} S {a}.{p A =B} S2 {q},

(R4) {p} if B then S else S fi {q}
{pAB} S {p}

(RS) {p} while B do S do {p A B}

p—=pi,d{pi} S{a}, i — g
(R6)) 5 {a}

o P=q-y+r=xzAr >0,
e (1){x>0Ay>0}qg:=0; r:=x {P}

e {gry+z=xNz>0}r:=x {P} by (A2),

o {0cy+z=2Ax>0}q:=0{¢-y+z=zAz >0} by (A2),

e {0-y+xz=xzAxz>0}q:=0; r:=z {P} by (R3),
———————

-
~
~~

e (1) by (R6) using —

—_————

z>20ANy>20—=0-y+x=xAx>0.

Once Again

— 15 - 2015-07-09 — Spsq —

e P=q-y+r=axAr>0
{x>0Ay >0}
{0-y+z=znz>0}

o q:=0;
{¢-y+axz=xAnz >0}

o ri=ux;
{¢-y+r=znz>0}
(P}

e while r > y do
{PAr >y}

{la+D) - y+ -y =zA(r—y) =20}

o ri=r—uy;
{(g+1)-y+r=zAz>0}

e qg:=q+1
{¢-y+r=aznz>0}

{r}

e do
{PA=(r=y)}
{ae-y+r=arr<y}

A2
R3

Al

A2

R
A

29/54

(A1) {p} skip {p}
(A2) {plu = 1]} u:=t {p}

{p} S1 {r}.{r} S> {q}
(R3) {p} S1; S2 {q}

(R4

) {pA B} S1 {a}.{p A =B} S {q},

{p} if B then S else S fi {q}

{pA B} S {p}

(RS) {p} while B do S do {p A ~B}

p=piip}t S{nt e —gq
&) {0} 5 {a}

R3,RE

RS

30/54

Modular Reasoning

We can add a rule for function calls (simplest case: only global variables):

{p} f {q}
R W1 70 (@)

“If we have F {p} f {q} for the implementation of function f,
then if f is called in a state satisfying p, the state after return of f will satisfy ¢.”
p is called pre-condition of f, g is called post-condition.
Example: if we have
o {true} read number {0 < ret < 103}
e {0 <z A0<y} add {(old(x) + old(y) < 10% A ret = old(x) + old(y)) V ret < 0}
o {true} display {(0 < old(x) < 10° = ”old(2)") A (old(z) < 0 = ”-E-")}

we may be able to prove our (— later) pocket calculator correct.

I
u? int main() {
. + 27 while (true) {
3) int x = read_number ();
i 0 int y = read_number();
o 1 int sum = add(x, y);
3V aF §
9 display (sum);
;“” = :) play (sum)
| 1 3154
Assertions
We add another rule for assertions:
(A3) {p} assert(p) {p}
e That is, if p holds before the assertion, then we can continue with the proof.
e Otherwise we “get stuck”.
So we even prove
{true} x :=0; assert(z = 27) {true}.
to hold (it is not derivable).
. ® Which is exactly what we want — if we add
& e (assert(B), o) — (F,0)ifo = B,
|
3 to the transition relation.
§ (If the assertion does not hold, the empty program is not reached;
h the assertion remains in the first component: abnormal program termination).
T 32/54

Why Assertions?

e Available in standard libraries of many programming languages, e.g. C:

©® NG AW N =

11
12
13
14
15
16
17
18

ASSERT(3)

NAME
assert — abort the program if assertion is false

SYNOPSIS
#include <assert.h>

DESCRIPTION

Linux Programmer's Manual

void assert(scalar expression);

[...] the macro assert() prints an error message to stan
dard error and terminates the program by calling abort(3) if expression

is false (i.e., compares equal to zero).

The purpose of this macro is to help the programmer find bugs in his
The message "assertion failed in file foo.c, function

program.

do_bar(), line 1287" is of no help at all to a user.

ASSERT(3)

I
&
|
I
h
Why Assertions?
o Assertions at work:
1
2
3
4
5
!
|
&
|
I
h

e Available in standard libraries of many programming languages, e.g. C:

ASSERT(3) Linux Programmer's Manual ASSERT(3)

NAME
assert — abort the program if assertion is false

6 SYNOPSIS

#include <asserth>
void assert(scalar expression);

DESCRIPTION
[..] the macro assert() prints an error message to stan

dard error and terminates the program by calling abort(3) if expression

is false (i.e., compares equal to zero).

The purpose of this macro is to help the programmer find bugs in his
program. The message "assertion failed in file foo.c, function

do_bar(), line 1287" is of no help at all to a user.

int square(int x)

assert(x < sqrt(x));

return X * X;

void f(...) {

}

assert(p);

assert(q);

3354

3354

— 15 — 2015-07-09 — main —

— 15 — 2015-07-09 — Svcc —

The Verifying C Compiler

34/54

vCcC

e The Verifying C Compiler (VCC) basically implements Hoare-style reasoning.

e Special syntax:

#include <vcc.h>

_(requires p) — pre-condition, p is a C expression
_(ensures ¢) — post-condition, ¢ is a C expression
_(invariant expr) — looop invariant, expr is a C expression
_(assert p) — intermediate invariant, p is a C expression

_(writes &v) — VCC considers concurrent C programs; we need to declare for each
procedure which global variables it is allowed to write to (also checked by VCC)

Special expressions:
e \thread_local(&v) — no other thread writes to variable v (in pre-conditions)
e \old(v) — the value of v when procedure was called (useful for post-conditions)

e \result — return value of procedure (useful for post-conditions)

35/54

VCC Syntax Example

— 15 - 2015-07-09 — Svcc —

1| #include <vcc.h>

2

3 int q, r;

4

5 void div(int x, int y)

6 _(requires x >= 0 && y >= 0)

7 _(ensures g * y + r = x && r < y)
8 _(writes &q)

9 _(writes &r)

10| {

11 q = 0;

12 r = x;

13 while (r >=y)

14 _(invariant q x y + r = x && r >= 0)
15 {

16 r r—y;

17 q=4q+ 1;

DIV =q:=0; r:=x; whiler >ydor:=r—uy;

q:=q+1do

{r>0Ay>0} DIV {q-y+r=xAr <y}

VCC Web-Interface

— 15 - 2015-07-09 — Svcc —

|

| Vee @ risedfun from Micr... % | &

& @ risedfun.com/ec/acpx

el B 3|

P

Vcc Research

Does this C program always work?
1 #include <vcc.h>
3dntq, r;
4
5 void div(int x, int y)
6 _(requires x >= 0 & y >= 0)
7 _(ensures g ¥y +r == x && T <y)
& _(writes &q)
9 _(writes &r)

0;
X:

Mg
12 r

14 while (r >=y)
15 _(invariant q *y + r == x 8& r »= 0)

20 }

21
[Fone|
E ut: A1T+B

samples

Isearch
safestring
bozosort
spinlock

tools developer about

ation - terms of use - privacy & cookies - code of conduct

W

36/54

37/54

VCC Architecture

— 15 = 2015-07-09 — Svcc —

3854

VCC Features

— 15 — 2015-07-09 — Svcc —

For the exercises, we use VCC only for sequential, single-thread programs.
VCC checks a number of implicit assertions:

e no arithmetic overflow in expressions (according to C-standard),

e array-out-of-bounds access,

e NULL-pointer dereference,

e and many more.

VCC also supports:

e concurrency: different threads may write to shared global variables; VCC can check whether
concurrent access to shared variables is properly managed;

o data structure invariants: we may declare invariants that have to hold for, e.g., records (e.g.
the length field I is always equal to the length of the string field str); those invariants may
temporarily be violated when updating the data structure.

e and much more.

Verification does not always succeed:

e The backend SMT-solver may not be able to discharge proof-obligations (in particular
non-linear multiplication and division are challenging);

e In many cases, we need to provide loop invariants manually.

39/54

Interpretation of Results

e VCC says: “verification succeeded

We can only conclude that the tool —
under its interpretation of the C-standard,
under its platform assumptions (32-bit), etc.

— "“thinks" that it can prove |= {p} DIV {q}. Can be due to an error in the tool!

Yet we can ask for a printout of the proof and check it manually (hardly possible in practice) or
with other tools like interactive theorem provers.

Note: |= {false} f {q} always holds

— so a mistake in writing down the pre-condition can provoke a false negative.

e VCC says: “verification failed

— 15 - 2015-07-09 — Svcc —

fi - Mocila Firsfox

D Bay >0 Ak x <= 15 88y <= 15)
Qmx /oy ALk

\thread_local (56))

\thread_local ()

)
11 Z(writes &r)
i
13 g0
1o

25
0
! pernalini

Verification of div succeeded. [3.97]

e One case: “timeout” etc. — completely inconclusive outcome.

May be a false negative if these inputs are actually never used.
Make pre-condition p stronger, and try again.

(Automatic) Formal Verification Techniques

all computation
paths satisfying
specification —_

(2 x A~

Investigate All Paths

(like Uppaal; possible for
finite-state software; no false
positives or negatives)

— 15 — 2015-07-09 — Soverunder —

e The tool does not provide counter-examples in the form of a computation path.

It (only) gives hints on input values satisfying p and causing a violation of g.

40/54

41/54

(Automatic) Formal Verification Techniques

— 15 — 2015-07-09 — Soverunder —

. (2 x A~
all computation

paths satisfying

specification —L_ 7

Investigate All Paths

(like Uppaal; possible for
finite-state software; no false
positives or negatives)

41/54

(Automatic) Formal Verification Techniques

. (EZx A
all computation

paths satisfying
specification ~_

Investigate All Paths Over-Approximation
(like Uppaal; possible for (some Software model-checkers;
finite-state software; no false goal: verify correctness; false
positives or negatives) positives, no false negatives)

— 15 — 2015-07-09 — Soverunder —

41/54

(Automatic) Formal Verification Techniques

. (Zx A
all computation

paths satisfying

specification ~_ ‘

41/54

|
A Investigate All Paths Over-Approximation
§ (like Uppaal; possible for (some Software model-checkers;
= finite-state software; no false goal: verify correctness; false
g positives or negatives) positives, no false negatives)
|
T 41 /54
(Automatic) Formal Verification Techniques
. (EZx A
all computation
paths satisfying
specification ~_
|
E
£
é‘% Investigate All Paths Over-Approximation Under-Approximation
§ (like Uppaal; possible for (some Software model-checkers; (e.g. bounded model-checking;
= finite-state software; no false goal: verify correctness; false goal: find errors; false
g positives or negatives) positives, no false negatives) negatives, no false positives)
|
|

(Automatic) Formal Verification Techniques

. (Zx A
all computation

paths satisfying
specification ~_

— 15 — 2015-07-09 — Soverunder —

Investigate All Paths Over-Approximation Under-Approximation
(like Uppaal; possible for (some Software model-checkers; (e.g. bounded model-checking;
finite-state software; no false goal: verify correctness; false goal: find errors; false
positives or negatives) positives, no false negatives) negatives, no false positives)
41/54
References
|
E
|
8
S
5
|
|

5354

References

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.
ISO (2011). Road vehicles — Functional safety — Part 1: Vocabulary. 26262-1:2011.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

— 15 - 2015-07-09 — main —

54 /54

