Softwaretechnik / Software-Engineering

Lecture 16: Testing & Review

2015-07-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

The Verifying C Compiler

465

Contents of the Block “Quality Assurance”

(i) Introduction and Vocabulary
o correctness illustrated
« vocabulary: fault, error, failure
« three basic approaches

Formal Verification

Introduction

Development
Process, Metrics

Hoare calculus Requirements
7« Verifying C Compiler (VCC) Engineering
» over- / under-approximations
(iii) (Systematic) Tests
« systematic test vs. experiment
o classification of test procedures
« model-based testing
,  glass-box tests: coverage measures Architecture &
£ (iv) Runtime Verification
o (v) Review
- (vi) Concluding Discussion Sergo’ WRA I
5 « Dependability Dawel: o[> Invited Talks L7
£ [
b Jochen: Ubmate  —Wropllp— L1s
0 2/65
vce
« The Verifying C Compiler (VCC) basically implements Hoare-style reasoning.
S
« Special syntax: WBW &f
 #include <vcc.h> P m,me
 _(requires p) — pre-condition, p is a C expression
 _(ensures ) — post-condition, ¢ is a C expression
© (invariant expr) — looop invariant, expr is a C expression
* _(assert p) — intermediate invariant, p is a C expression
© _(writes &v) — VCC considers concurrent C programs; we need to declare for each
procedure which global variables it is allowed to write to (also checked by VCC)
o Special expressions:
8 © \thread_local(&v) — no other thread writes to variable v (in pre-conditions)
T © \old(v) — the value of v when procedure was called (useful for post-conditions)
S © \result — return value of procedure (useful for post-conditions)
b 56

13 - Sprelim —

Contents & Goals

Last Lecture:

.

Completed the block “Architecture & Design”

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
* What can we conclude from the outcome of tools like VCC?
* Wha

« Given a test case and a software,

an example for not a test, non-systematic test, systematic test?
the outcome successful or unsuccesful?

= How many test cases are necessary for exhaustive testing of a given software?

Content:

o The Verifying C Compiler (VCC)

« Systematic test, test case, test suite
o Testing notions

« Coverage measures

| 365
VCC Syntax Example
#include <vcc.h>
o| inta.
2| veid div( int x Ny )
A _(requires x >= 0)&& y >= 0)
( P A ) p
(w
_(writes &r)
10| {
ul ja=o:
Ao
while (r >=y)
(invariant @'« y + r = x & r >= 0) V|
{ o
=y
q=q+ 1
vv
5 DIV =q:=0; r:=x; whiler >ydor:=r—y ¢g:=q+1do
H ===
{&=20Ay>0} DIV {q-y+r=aAir<y}
I e B
6/65




VCC Web-Interface

& S e e &=

vee ™=

it ¢« >+ )

76s

Interpretation of Results

2015.07-13

16

ication succeeded

le that the tool —
terpretation of the C-standard,

VCC Architecture

16 - 2015-07-13 - Svec -

Recall: Three Basic Directions

s platform assumptions (32-bit), etc.
hinks" that it can prove |= {p} DIV {q}. Can be due to an error in the to

Yet we can ask for a printout of the proof and check it manually (hardly possible in practice) or
with other tools teractive theorem provers.

Note: |= {false} f {g} always holds
— 50 a mistake in writing down the pre-condition can provoke a false negative.

o VCC says: “verification failed

= One case: “timeout” etc. — completely inconclusive outcome.

o The tool does not provide counter-examples in the form of 2 computation

It (only) gives hints on input values satisfying p and causing a violation of g.
May be a false negative if these inputs are actually never used.
Make pre-condition p stronger, and try again.

10765

all computation
paths satisfying
specification  —_

Reviewer
' review r1
I U = input LD 5 output
2 Review Testing

prove S k= 7.
conclude
IS1e 71

Formal Verification

11/65

VCC Features

o For the exercises, we use VCC only for sequential, single-thread programs.

it assertions:

* VCC checks a number of impl
« no arithmetic overflow in expressions (according to C-standard),

« array-out-of-bounds access,

NULL-pointer dereference,

and many more.

« VCC also supports:

« concurrency: different threads may write to shared global variables; VCC can check whether
concurrent access to shared variables is properly manage

« data structure invariants: we may declare invariants that have to hold for, e.g., records (e.g.
the length field [ is always equal to the length of the string field str); those invariants may
temporarily be violated when updating the data structure.

= and much more.

* Ve

cation does not always succeed:

= The backend SMT-solver may not be able to discharge proof-obligations (in particular
non-linear multiplication and division are challenging);

o In many cases, we need to provide loop invariants manually.

Testing

12/65



Quotes On Testing

“Testing is the execution of a program with the goal to discover errors.
R0 CISCOveET SO

G. J. Myers, 1979

“Testing is the demonstration of a program or system with the goal to |
show that it does what it is supposed to do. W. Hetzel, 1984

i) e i of gemanis: sy

Jechip
“Software can be used to show the presence of bugs, but never to show il

their absence!” E.W. Dijkstra, 1970

Rule-of-thumb: (fairly systematic) tests discover half of all errors.
(Ludewig and Lichter, 2013)

1365

Test Case Execution, Test Suite

Tests vs. Systematic Tests

Test — (one or multiple) execution(s) of a program on a computer with the
goal to find errors. (Ludewig and Lichter, 2013)

(Our) Synonyms: Experiment, ‘Rumprobieren’.

Not (even) a test (in the sense of this weak definition):
o any inspection of the program,

« demo of the program,

o analysis by software-tools, e.g. for values of metrics,

« investigation of the program with a debugger.

Systematic Test — a test with
o (environment) conditions are defined or precisely documented,
o inputs have been chosen systematically,

o results documented and assessed according to criteri
ind Lichter, 2013)

In the following: experiment := test — test := systematic test.

Test Case Execution, Test Suite

* An execution of test case T' for software S is a computation path of 5

"+ where o <y o} 22 03 = In, for some i in T.

o The test case execution is called
« succesful (or positive) if it discovered an error, i.e. if w ¢ Soll;
(Alternative: test item failed to pass test; confusing: “test failed”.)
« unsuccesful (or negative) if it did not discover an error, i.e. if 7 € Soll;.
(Alternative: test item passed test; okay: “test passed”.)

Note: if input sequence not adhered to, or power outage, etc., it is not a test execution

o A test suite is a set of test cases.

Execution, pos

., and negative are lifted canonically.

More Formally: Test Case

o Atest case T is a set of pairs {(In1, Soll1), ...} consisting of
« a (description of a) finite input sequence In; (pairwise different in T),

« a (description of ) finite set of expected computation path Soll;.

Examples:

o Ty = (FILLUP, C50; water button on) (shorthand notation)
(fill up vending machine (at any time after power on
expect water button is enabled (some time later))

insert C50 coin (at any time),

o Ty ={(0h 5 ofio0 2 01) | oi(a) = TAai(y) = 49}

(input 7, expect output 49, don’t care for other variables' values; shorthand notation: (T
o Ty ={(oh = oli00 = 01)} 0b = 0 = 0z :=T], 00 = 0, 01 = Ofy := 49]

(each and every variable value at start and at end fixed) R stantt 1bafi, ©

)

15/65

The Outcome of Systematic Tests Depends on. ..

puts:
« the input vector of the test case (of course), possibly with timing constraints,
« other interaction, e.g., from network,

« initial memory content,

o etc

(environmental) conditions:

any aspects which could have an effect on the outcome of the test such as

« which program (version) is tested? built with which compiler, linker, etc.?

« test host (OS, architecture, memory size, connected devices (configuration?), etc.)
nvolved?

« which other software (in which version, configuration)
« who tested when?

o etc.

so strictly speaking all of them need to be specified within (or as an extension to) In.

o In practice, this is hardly pos:
order to achieve reproducibility.

le — but one wants to specify as much as possible in

« One approach:
have a fixed build environment, a fixed test host which does not do any other jobs, etc.




Test Conduction Specific Testing Notions

Software Examination (in Particular Testing)

« In each check, there are two paths from Tz | « How are the test cases chosen?

specification to result: it i i i oy .

pecticatt . Qupive] [Bresren] [Ecovon [Eabation]  [Anabsl « Considering the structure of the test item (glass-box or structure test).

* the ducti th (usi d P P -

the production voth (using model, source LV « Considering only the specifcation (black-box or function test)
o the examination path Test Test Cases Test Test.
(using requi spe ) Plan Test Protocol Report ) . .
Directions  How much effort is put into testing?
i Test Gear

© A check can only discover errors on execution trial — does the program run at all?

exactly one of the paths. . . .

What is not on the path + checked “xamination throw-away-test — invent input and judge output on-the-fly,
« What is not on the paths, is not checked; N ) o

crucial h m_uon_mS:n_n: and _Saum:mn: eesulelvy/ X/ o Test Gear: systematic test — somebody (not author!) derives test cases, defines input/soll,
» Difference detected test driver— A software module used to invoke a module under test and, often, documents test execution

examination result is positive - ””mﬁ”mnﬂ mnu uwﬁwﬂ_wﬂ. provide test inputs, control and monitor execution, and report test results. In the long run, systematic tests are more economic.

Synonym: test harness. IEEE 610.12 (1990)
. (Ludewig and Lichter, 2013)
Recall: o i rocatrs stub(1) A skeletal or special-purpose implementation of a software module, used to « Complexity of the test item:
develop or test a module that calls or is otherwise dependent on it. unit test — a single program unit is tested (function, sub-routine, method, class, etc.)

(2) A computer program statement substituting for the body of a software module
that is or will be defined elsewhere. |EEE 610.12 (1990)

module test — a component is tested,
tegration test — the interplay between components is tested.

13— Stestintro -

ves

15.0

true negative

system test — tests whole system.

hardware-in-the-loop, software-in-the-loop: the final implementation is running on
(prototype) hardware, other system component are simulated by a separate computer.

artefact has error

20765

~16-21

1965

T 18/65

The Crux of Software Testing

The Crux of Software Testing

Specific Testing Notions Cont’d

o W
function test — functionality as spe«
installation test — is it possible to install the software with the provided documentation

and tools?

12345705

h property is tested?
ied by the requirements documents, 12345678
+ 27 3

it possible to bring the system back to operation after

recomminsioning test —
operation was stopped?

availability test — does the system run for the required amount of time without issues,

red under high or highest load?

load and stress test — does the system behave as req

under overload?

Hey, let's try how many game objects can be handled!” — that's an experiment, not a test.

regression test — does the new version of the software behave like the old one on inputs
where no behaviour change is expected?

0
+
]

0
¥
]

response time , minimal hardware (software) requirements, etc.
« Requirement:

If the display shows

+, and y, then after pressing =,

If the display shows x, +, and y, then after pressing =,

« Which roles are involved in testing?

o the sum of x and y is displayed if  + y has at most 8 digits,

= o only the developer, or selected (potential) customers (alpha and beta test), o the sum of z and y is displayed if z + y has at most 8 digits

is displayed. is displayed.

o otherwise

* acceptance test — the customer tests whether the system (or parts of it, at
milestones) test whether the system is acceptable.

o otherwise "-E-

16 - 2015.07-13 - St

22/65



Testing the Pocket Calculator

9
4.5 6
112]3

0
"
-]

Test some representatives of “equivalence classes”:

n+1, nsmall,
n+m, n small, m small (for non error),
n+m, n big, m big (for non error),
n+m, n huge, m small (for error),

Testing the Pocket Calculator

Stesterux

2015-07-13

16

Test some representatives of “equivalence classe:

n-+1 nsmall,
n+m, n small, m small (for non error),
n+m, n big, m big (for non error),

n+m, n huge, m small (for error),

eg 27T+1

eg 13427

e.g. 12345 + 678
e.g. 99999999 + 1

2365

eg. 27+1

eg 13+27

e.g. 12345 + 678
e.g. 99999999 + 1

2365

Testing the Pocket Calculator

16 - 2015-07-13 - Stestcrux —

Test some representatives of “equivalence classes”:

n+1, nsmall,
n+m, n small, m small (for non error),
n+m, n big, m big (for non error),
n+m, n huge, m small (for error),

Testing the Pocket Calculator

13 - Stesterux -

16 - 2015,

Test some representatives of “equivalence classes'

n+1, n small,

n+m, n small, m small (for non error),

n 4 m, n big, m big (for non error),

n+m, n huge, m small (for error),

eg 2741
e.g 13427

e.g. 12345 4 678
e.g. 99999999 + 1

2365

eg 27+1
eg 13427

e.g. 12345 + 678
e.g. 99999999 + 1

2365

Testing the Pocket Calculator

9
4.5 6
3

Test some representatives of “equivalence classes”:

n+1,nsma

7 +m, n small, m small (for non error),
n+m, n big, m big (for non error),
n+m, n huge, m small (for error),

Testing the Pocket Calculator

Test some representatives of “equivalence classes

13 - Stesterux -

16 - 20150

n+1, n small
n+m, n small, m small (for non error),
n+m,n
n+m, n huge, m small (for error),

. m big (for non error),

0
n
]

eg 2741

eg 13+27

e.g. 12345+ 678
e.g. 99999999 + 1

23/65

eg 27+1

eg 13427

e.g. 12345 + 678
e.g. 99999999 + 1

23/65



Testing the Pocket Calculator Testing the Pocket Calculator

Testing the Pocket Calculator

13023 99999999
1

0 9
+ 4/5]6
1]2]s3

0
n
-]

Test some representatives of “equivalence classes”:

Test some representatives of “equivalence classes”:

Test some representatives of “equivalence classes”:
o n+1,nsmall eg 27+1 L e n+1, nsmal eg 2741 L e n+ 1, nsmall, eg 27T+1
o n+m, n small, m small (for non error), eg 13+27 £ e m+m, nsmall, m small (for non error), eg 13427 2 e n+m, nsmall, m small (for non error), eg 13+27
o n+m, n big, m big (for non error), e.g. 12345 + 678 . e n+m, n big, m big (for non error), e.g. 12345 + 678 = * n+m, n big, m big (for non error), e.g. 12345+ 678
® n+m, n huge, m small (for error), e.g. 99999999 + 1 © o n+m, n huge, m small (for error), e.g. 99999999 + 1 5 e n+m, n huge, m small (for error), e.g. 99999999 + 1
.. T e
i 236 i 236 ° 23/6s
Testing the Pocket Calculator: One More Try Testing the Pocket Calculator: One More Try Behind the Scenes: Test “99999999 + 1” Failed Because...
t add( int x, int
1 00000000 (5 e it oo G2 9 )
+ 99999999 M = ) ke e
4 return ++x;
5 S—— hcrend &y 1
6 intr=x+y;
7
5 if (r > 99999999)
9 r= -1
10
11 return r;
2}
- o Oops... g
2465 V,J 25/65

16

2465



And Software Usually Has Many Inputs

Software is Not Continous Software is Not Continous

« Example: Simple Pocket Calculator.
With one million different test cases,
9,999,999,999,000,000 of the 10'° possible inputs remain uncovered
10W: only 0.00000001% of the possible inputs convered, 99.99999999% not touched.

A continous function: e

Software is (in general) not Software is (in general) not
continous

continous.

int £( int x ) { int f(int x ) {

1
> inir=0; > intr=0

3 if (0 <= x & x < 128) 3 if (0 <= x & x < 128)

. r= fast £(x); // only for [0,127] . v = fast f(x); // enly for [0.127]

5 else if (128 < x & x < 1024) 5 else if (128 < x & x < 1024)

o = slow £(x): // only for [128.1023] v = slow f(x); // only for [128,1023]
7 else else

o = really slow f(x); // only for [1024,..] X s v = really slow f(x); // only for [1024,..]
o return T g o return r;

0}

~fohb, slos b wnly sty g commcé
~ {670 ke x & rpered

And if we restart the pocket calculator for each test,
we o not know anything about problems with sequences of inputs.

« Range error: multiple “neighbouring” inputs trigger the error.

« Point error: an isolated input value triggers the error. !

2865

i 2665 26/6s b 27/6s
When To Stop Testing? When To Stop Testing? When To Stop Testing?
o The natural criterion “when everything has been done” does not apply for o The natural ¢ 4 errors sly for
testing — at least not for testing pocket calculators. testing — at . number of dis-
covered errors
© So there need to be defined criteria to stop tes © So there neec cost
these criteria and experience with them. these criteria threshold | _—
o Possible testing is done criteri: o Possible testi
o all (previously) specified test cases have been executed with negative result, o all (previous fscovered erfor ,
« testing effort sums up to x hours (days, weeks), o testing effor
« testing effort sums up to y (any other useful unit), o testing effor :
« n errors have been discovered, o n errors hav end of tests  *
 no error has been discovered during the last = hours (days, weeks) of testing, « no error has
« the average cost per error discovery exceeds a defined threshold ¢, « the average cost per error discovery exceeds a defined threshold c,
i i 28

16

2865



When To Stop Testing?

The natural criterion “when everything has been done” does not apply for
testing — at least not for testing pocket calculators.

So there need to be defined criteria to stop testing; project planning considers
these criteria and experience with them.

o Possible testing is done c

eria:
« all (previously) specified test cases have been executed with negative result,
o testing effort sums up to « hours (days, weeks),

 testing effort sums up to y (any other useful unit),

« n errors have been discovered,

© no error has been discovered during the last z hours (days, weeks) of tes

€
o the average cost per error discovery exceeds a defined threshold c,

Values for z, y, n, z, c are fixed based on experience, estimation, budget, etc..

« OF course: not all equally reasonable or compatible with each testing approach

28/65
Lion and Error Hunting
“He/she who is hunting lions, should know how a lion looks like. He/she
should also know where the lion likes to stay, which traces the lion leaves
behind, and which sounds the lion makes.” (Ludewig and Lichter, 2013)
Hunting errors in software is (basically) the same.
Some traditional popular belief on software error habitat:
* Software errors — in contrast to lions — (seem to) enjoy
« range boundaries, e.g.
© 0, 1, 27 if software works on inputs from [0,27],
o -1, 28 for error handling,
o —231 1, 231 on 32-bit architectures,
o boundaries of arrays (first, last element),
= o boundaries of loops (first, last iteration),
@ « special cases of the problem (empty list, use-case without actor, ... ),
2 « special cases of the programming language semantics,
% complex implementations.
0 3165

Choosing Test Cases

29765

~16 -2

Where Do We Get The “Soll”-Values From?
© In an ideal world, all test cases are pairs (In, Soll) with proper “sol
As, for example, defined by the formal requirements specification.
Advantage: we can mechanically, objectively check for positive,/negative.
e In the this world
o the formal requi ification may only ively describe results

without giving a procedure to compute the results.
« there may not be a formal requirements specification, e.g.

© “the game objects should be rendered properly"

‘the compiler must translate the program correctly”,

‘the notification message should appear on a proper screen position”,
© “the data must be available for at least 10 days”.
o etc

Then: need another instance to decide whether the observation is acceptable.

o The testing community prefers to call any instance which decides whether results
===
are acceptable an oracle.

| prefer not to call decisions based on formally defined test cases “oracle”

32,

Choosing Test Cases

A test case is a good test case if discovers with high probability an unknown error.

An ideal test case should be

« representative, i.e. represent a whole class of inputs,

o error sensi

ity to detect an error,

« of low redundancy, i.e. it does not test what other test cases also test.

ticularly problematic

In general, we do not know which inputs lie in an equivalence class wrt. errors.

The wish for representative test cases is |

o Recall point errors (pocket calculator, fast/slow f,

Yet there is a large body on literature on how to construct representative test cases,
assuming we know the equivalence classes.

"Acceptable” equivalence classes: Based on requirement specifica

« valid and inv: inputs (to check whether input validation works),
o different classes of inputs considered in the requirements,

e.g. "buy water", “buy soft-drink”, “buy tea” vs. "buy beverage”

Glass-Box Testing: Coverage




Glass-Box Testing: Coverage

Coverage is a property of test cases and test suite
Recall: An execution of test case T = (In, Soll) for software S is a computation path

(%)

Let S be a (or model) consisting of statements Ss,,, conditions Sc,a,
and a control flow graph (V, E) (as defined by the programming language).

%& Aﬁ»&A
A VVl.:symanﬁlf\.ﬁ.:us
o ) s

Assume that each state o gives information on statements, conditions, and control flow
graph edges which were executed right before obtaining o

stm : X — 2550, cnd : X - 25¢

edg: % — 27

T achieves p % statement coverage if and only if p =

Use

T achieves p % branch coverage if and only if p =
Define: p = 100 for empty program.

Statement /branch coverage canonically extends to test suite 7.

Coverage Example

int f( int , int y, int 2 )
{
if (2> 100 Ay > 10)

st z=2z%x2;

else
o B
i if (@>500 vy > 50)
sy z=2z%5;
< return z;

o Requirement: {true} f {true} (no abnormal termination)

% | % | ia/%
Ty, 2 ir/t  in/f | s | sa | daft | d2/f | e1 | c2 | s3 | sa | stm | cfg | term
501,110 | v v v v viv | 5] 50 25
501,0,0

Coverage Example

int

o Requirement:

f(int

,int y, int 2 )

if (x> 100 Ay > 10)
r=zx2;

else
z=2z/2;

if (x> 500V y > 50)
=245

return z;

{true} f {true} (no abnormal termination)

Coverage Example

* Requirement:

if (x> 500V y > 50)
Z=z%5;
return z;

{true} f {true} (no abnormal termination)

% % | /%
cyz i/t |i/f | s | s [injt [iaff e o | s sm cfg | term
501,11,0 4 4 v 4 v 75 50 25
501,0,0 v 4 v 4 4 100 75 25
0,0,0

35/65

Coverage Example

o Requirement: {true} f {true} (no abnormal ten

e

int f( int x, int y, int 2 )

{
n: if (2> 100 Ay > 10)
s1 z=2%2;

z=2/2;
i Af (@500 Vy > 50)
o z=zk5; [5s]

s return z;

% % | i2/%

i/t | in/f | s | s2 | daft dia/f | 1 | ca sz | sa || stm | cfg | term

501,11,0

Coverage Example

int f( int x, int y, int z ) nw
{
if (x> 100 Ay > 10)

o oz=zx2

else
w B=2[2;
if (x> 500V §=50)
s z=2z%5;
s Teturn z;

o Requirement: {true} f {true} (no abnormal termination)

z,y,z inft | in/f | s | s2 | daft dia/f | e | ca sz | sa || stm | cfg | term
501,1,0 v v v v v]v]| ] 0] 2
501,0,0 v v]v v v]v|iwo] 5] 2
0,0,0 v v v v || 100 [ 100 | 75
0,51,0




Coverage Example

int f( int , int y, int 2 ) nw
{
if (> 100 Ay > 10)
s z=2x2
else

z=2[2
iy if (x> 500V y > 50)
s z=2%5;
s return z;

« Requirement: {true} f {true} (no abnormal termination)

% | % | i2/%
wyz  |ift iff | s | s | e/t |iaff [ er | ea | s | sa | stm | cfg | term
501,11,0 v v v v v v 75 50 25
501,0,0 4 4 v 4 v | v 100 75 25
0,0,0 4 v v v 100 | 100 75
0,51,0 v v] v v v | 100 [ 100 | 100

Conclusions from Coverage Measures

o Assume, we are testing property © = {p} f {q} (maybe just ¢ = true with #),
© assume our test suite 7 achieved 100 % statement / branch / term coverage.
What does this tell us about f? Or: what can we conclude from coverage measures?
« 100% statement coverage:

* “ther

(Still, there may be many, many computation paths which violate ¢,
and which just have not been touched by 7, e.g. differing in variables' valuation.)

no statement, which necessarily violates "

« ‘there is no unreachable statement”

© 100% branch (term) coverage:

“there is no single branch (term) which necessarily causes violations of ¢

IOW: “for each condition (term), there is one computation path satisf
condition (term) evaluates to true/false”

g ¢ where the

* “there

no unused condition (term)”

Not more (— exercises)!

That's something, but not as much as “100 %" may sound.

Term Coverage

« Consider the statement capr
—_—
it (AA(BV (CAD))VE) then

A, ..., E are minimal boolean terms, e.g. x > 0, but not a V b.
© Branch coverage is easy: use (A=0,...,E=0)and (A=0,...,.E=1).

o Additional goal: check whether there are useless

terms, or terms causing abnormal program termination.

« Term Coverage (for an expression eapr):

o Let i

{A1,...,Ax} — B be a valuation of the terms.

o Term A, is b-effective in 3 for capr if and only if

: B(A:) = b and [ecpr](8[A./truel) # [eapr] (3[A:/false]).

Au} = B) achieves p% term coverage if and only if

& pe [{A% |38 € S o A, is b-effective in 5}|
: I Te—

Coverage Measures in Certification

o (Seems that) DO-178B,
Software Considerations in Airborne Systems and Equipment Certification,
which deals with the safety of software used in certain

© requires certain coverage results.
(Next to development process requirements, reviews, unit testing, etc.)

o Currently, the standard moves towards accepting certain vel
analysis tools to support (or even replace?) some testing ol

AJBJC]DJE] %
1[1]o0]Jo]o0]20
1/0]0[1]0]50
1[o[1]1]0][70
ojo[1]o]1]80
36/65
borne systems,
39765

Unreachable Code

int f( int 2, int y, int z )

{
i if (z# 1)
w0 2 =y/0;
i if (x=a Y 2/0=27)
V0=
o z=ax2 meww
« Teturn %
}

© Statement s, is never executed (z £z <= false),
thus 100 % coverage not achievable.

o Is statement s an error anyway...?

 Term y/0 is never evaluated either (short-circuit evaluation)

Model-Based Testing

4076



Model-based Testing

ﬁ ot enabied = (25 0) e enabied

O3

csor

e emabied = (5

* Does some software implement the given CFA model of the CoinValidator?

Model-based Testing

ﬁ ot enabied = (5 0

O

e enabied = (1>
ok

drine eady

* Does some software
+ One approach: check whether each state of the model
has some reachable corresponding configuration in the software.
« Ty = (C50, €50, C50;
{m|3i le, 7 ~ h_c50, 7% ~ h_c100, 7* ~ h_c150})
checks: can we reach ‘idle’, 'have_c50', ‘have.c100', 'have.c150' ?
5 e Ty=(C50,C50,C50;...) checks for have_el’
' To check for ‘drink_ready’, more interaction is necessary.

plement the given CFA model of the CoinValidator?

41/6s

41/65

Model-based Testing

e
ﬁ oftenabied = (5 0) aternabled

tea.enabled -~

e enabled 1= (> 0)

« Does some software implement the given CFA model of the CoinValidator?
« One approach: check whether each state of the model
has some reachable corresponding configuration in the software.

« Ty = (C50, C50, C50;
{r|3i<j<h<loni~ideni~h c50,7 ~ h cl00,x¢ ~ h c150})

checks: can we reach ‘idle’, *have_c50', ‘have_c100', ‘have_c150'?

Model-based Testing

~16-20

2

o = (>
have <50

O===

« Does some software implement the given CFA model of the CoinV:
= One approach: check whether each state of the model
has some reachable corresponding configuration in the software.

Ty = (C50, 50, C50;
{m|3i<j<k<ten ~idle s ~hc50,7" ~ hcl00, 7’ ~ hc150})
checks: can we reach ‘idle’, *have_c50', ‘have.c100', ‘have.c150'?
Ty = (C50,C50,C50; ... ) checks for ‘have_el’.
© To check for ‘drink_ready’, more interaction is necessary.

4165

Or: Check whether each edge of the model has corresponding behaviour in the software.

4165

Model-based Testing

ﬁ ot anabied — (-

O =

steranabied
tea_enabled

« Does some software implement the given CFA model of the CoinValidator?
 One approach: check whether each state of the model
has some reachable corresponding configuration in the software

« Ty = (C50, C50, C50;
{7 |3i<j<h<lon ~idlems ~hc50,m* ~hclo0,x’ ~ h c150})
checks: can we reach ‘idle’, ‘have_c50', ‘have c100', ‘have_c150'?
5 * Ty = (C50, C50, C50;

) checks for ‘have_el".

41/65

Model-based Testing

driniready

* Does some software implement the given CFA model of the CoinValidator?
« One approach: check whether each state of the model
has some reachable corresponding configuration in the software.
Ty = (€50, C50,C50;
{r|di<j<k<len ~idle s ~ hc50,7% ~ hcl00, 7’ ~ h.c150})
, ‘have.c50', 'have_c100', *have_c150'?
) checks for ‘have.el".

checks: can we reach idl
« Ty = (C50, C50, C50;
* To check for ‘drink_ready’, more interact

n is necessary.

Or: Check whether each edge of the model has corresponding behaviour in the software.

Advantage: input sequences can automatically be generated from the model.
4165




Existential LSCs as Test Driver & Monitor (.

d Klose, 2001)

015-07-1

16

T

a1 _permisive
Uier Vet

ss0FT

o If the LSC has designated environment instance lines, we can

e
e

®

[send ps0FT

@D-sorr

Sorr
@D s
=

@0Ome

-0

Software

« messages expected to originate from the environemnt (driver role),

« messages expected adressed to the environemnt (monitor role).

Statistical Testing

42/65

Existential LSCs as Test Driver & Monitor (Letrari o

Klose, 2001)

Qe
®
- & - O

[Fort Software
sorr @D-erscso

ra.Co0

o T
: @De

If the LSC has designated environment instance lines, we can di

« messages expected to originate from the environemnt (driver role),
 messages expected adressed to the environemnt (monitor role).

Adjust the TBA-construction algorithm to construct a test driver & monitor and have it
(possibly with some glue logic in the middle) interact with the software (or a model of it).

Test passed

e., test unsuccessful) if and only if TBA state s is reached.

) 4265
Another Approach: Statistical Tests
One proposal to deal with the uncertainty of tests, and to avoid bias
(people tend to choose expected inputs): classical statistical testing.
i 44765

Existential LSCs as Test Driver & Monitor (Lewrari and Kiose, 2001)

?
ﬁ
) O
B A
@D-sorr
o Software

@D~ e

ra.cso

@D e

If the LSC has designated environment instance

es, we can
o messages expected to originate from the environemnt (driver role),

o messages expected adressed to the environemnt (monitor role)

Adjust the TBA-construction algorithm to construct a test driver & monitor and have it
(possibly with some glue logic in the middle) interact with the software (or a model of it).

Test passed reached.

test unsuccessful) if and only if TBA state gs

We may need to refine the LSC by adding an activation condition, or communication
which drives the system under test into the desired start state.

42765

Another Approach: Statistical Tests

One proposal to deal with the uncertainty of tests, and to avoid bias
(people tend to choose expected inputs): classical statistical testing.

Randomly choose and apply test cases 71, ..., T,

o if an error is found: good, we certainly know there is an error,

« if no error is found:
refuse hypothesis “program is not correct”

ith a certain confidence interval
Needs stochastical assumptions on error distribution and truly random test cases.

(Confidence interval may get large — reflecting the low information tests give.)

4465



Another Approach: Statistical Tests

One proposal to deal with the uncertainty of tests, and to avoid bias
(people tend to choose expected inputs): classical statistical testing.

T,

: good, we certainly know there is an error,

= Randomly choose and apply test cases 7. .

« if an error is foun

no error is foun
refuse hypothes

with a certain confidence interv:

“program is not correc
Needs stochastical assumptions on error distribution and truly random test cases.

(Confidence interval may get large — reflecting the low information tests give.)

(Ludewig and Lichter, 2013) name the following objections against statistical testing:

44/65

Another Approach: Statistical Tests

One proposal to deal with the uncertainty of tests, and to avoid bias
(people tend to choose expected inputs): classical statistical testing.
T,

an error is found: good, we certainly know there is an error,

* Randomly choose and apply test cases 77, .

.

o if no error is found:
refuse hypothesis “program is not correc

with a certain confidence interval

Needs stochastical assumptions on error distribu