Contents & Goals Recall: TBA Construction and Full LSC

Last Lecture:

« TBA: automata for infinite words @~
Softwaretechnik / Software-Engineering + Cuts and firedsets of an LSC body N
* TBA-construction for LSC body Enbad

Lecture 10: Live Sequence Charts Cont’d This Lecture:

o Educational Objectives: Capabi

iies for following tasks/questions.

* what is the existenti

| /universal, | /invariant interpretation of an LSC?
2015-06-15 « Given a set of LSCs, give a computation path which is (not) accepted by the LSCs.
o~ Given a set of LSCs, which scenario/anti-scenario /requirement is formalised by them?

o Formalise this pos

e scenario/anti-scenario/requirement using LSCs.

Concote sy

» Could there be a relation between LSC (anti-)scenarios and testing?

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
o Content: L

* Full LSCs

o Existential LSCs (scenarios)

Albert-Ludwigs-Universitit Freiburg, Germany

S o precharts, universal LSCs

« Requirements Engineering: conclusions

2m
Finally: The LSC Semantics Activation Condition
A full LSC % = (((£,=,~),Z, Msg, Cond, Loclnv, ©), acg, am, © %) consist of
 body ((£,=,~),Z.Msg, Cond, Loclnv, ©),
© activation condition aco € ®(C), strictness flag strict (otherwise called permissive)
 activation mode am € {initial, invariant}, i e T)MJI\Il
« chart mode existential (. = cold) or universal (6.« = hot). . LSCs vs. ,m.c\:\vﬁ\n
i ———t
~%
A set of words W C (C — B)* is accepted by . if and only if .
or: Sahsfies suffi of w
Ol ety in i Shihig | ok, ket
6z am = invariant
k| Zwewe SweW ke Noouw! Eaen
85| W ue40,Co) Aw/L € Lang(B(£)) | w* | o0, Co)Aw/k+1 € Lang(B(£))
L RS }
w LYl Yueweulsac — Yuwe W VkeNyow' =ac = 5
no«.\ w® = U0, Co) A w/1 € Lang(B(£)) | U590, Co)Aw/k+1 € Lang(B(2)) 8
L E gt]
& g g
5 where ac = aco AYSHA(0, Co) A ¥ME(D, Co); Co is the minimal (or instance heads) cut y,
- 4m : 5/3 0

LSCs vs. Software “

.
Let S be a software with [S] = {r u%% ENE

S is called compatible with LSC .’ over C' and € is if and only i

it
o ¥ = (C — B), i.e. the states are valuations of the conditions in C,
s ACE

. the events are of the form E!, E?.
Construct letters by joining o; and a1 (viewed as a valuation of E!, E?):
w(m) = (g0 Uar), (01 U z), (02 Uas),

——
Wo. =2

]
!
;

o e
(&2
‘

Example: Buy A Softdrink

R G

P
=

buy softdrink
true
invariant _I: _permissive

B B S e b by AL

[V oty

Nenn anent "

g
SO\

T

o

LSCs vs. Software

Example: Get Change

2015-06-15 - Ss

“10-

Recall: The ot Requirements Engineering

Let S be a software with [S] = {7 =70 5 01 2y |-}
S'is called compatible with LSC % over C and £ is if and only if

'afiet

L
Ao ©
Construct letters by joining o; and a1 (viewed as a valuation of El, E7): P

w(m) = (00 Uar), (01 Uaz), (02 Uaz), ... ; y

We say § satisfies LSC ¢ (e.g. universal, invariant), denoted by S =%, if and only if Customer Analyst

. - requirements analysis
Ve [S]¥k € Nosw(m"® | ac = wlm)" b= (0, Co) Aw(m/k + 1 € Lang(B(Z))

* ¥ = (C — B), i.e. the states are valuations of the conditions in C,
s ACE

.e. the events are of the form E!, E7.

One quite effective approach:

P = initial = invariant try to approximate the requirements with positive and negative scenarios.
o |Fwew Each JweW Ik e Noow | ach » Dear customer, please describe example usages of the desired system.

8 w’ | U0, Co) Aw/1 € Lang(B(.£L)) w® = Y0, Co)Aw/k+1 € Lang(B(. 2

L | YweWeuac = YweWVkeNyouw' = ac =

2 w’ =) Aw/1 € Lang(B(Z)) wh = U0, Co) Aw/k+1 € Lang(B(Z)) e system does

« From there on, refine and generalise:

Software S satisfies a set of LSCs %) what about exceptional cases? what about corner-cases? etc.

and only if § =% forall 1< i <n

Example: Don’t Give Two Drinks

= =
get change = s
true .
invariant I: permissive

[SC:only one drink
AC. true
AM: _invariant I: _permissive

\

, J

m m

| 50 m Bl

W £l m PpSOFT

m PSOFT m SOFT

W SOFT W SOFT

m chg-C50 m 3 false le—0O@) =bee
I

1073

Pre-Charts

A full LSC .2 = (PC, MC, acy, am, © ») actu

v consist of

pre-chart PC = ((Lp,=p.~p), Ip,Msgp. Condp, Loclnvp, ©p) (possibly empty),

Pre-Charts Semantics

7T
[S— B

am = invariant

0, am = initial

SweW ImeNoeuw’ | ac

3weW Ik <meNoouwh

Awk = g0, CF)

= ac

Note: Scenarios and Acceptance Test

e

. _ o
© main-chart MC = ((Lar, %ar, ~ar), s, Msgyy, Conday, Loclnvay, ©xr) (non-empty), 3 Awfk+1,...,w/m € Lang(B(PC)) H)
© activation condition ac € ®(C), strictness flag sirict (otherwise called permissive) Aw™ = glend(), A1) wlkit,. udy « Existential LSCs* may hint at test-cases for the acceptance test!

o activation mode am € {in variant}, Awfm+ 1€ Lang(B(MC)) Ma?z S| we | (% as well as (positive) scenarios in general, like use-cases)
o chart mode existential (6. = cold) or universal (@ = hot). ETTEETTN X&) H
—~ sm 0 H . "
) N uE0.CE) ~ o Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!
2 b m 2 (Because they require that the software r r exhibits the unwanted behaviour.)

= W 0.0
4 Aw/m+ 1€ Lang(B(MC)) A/t + 1 € Lang(B(MC|
12731) 3

1431

Universal LSC: Example Universal LSC: Example

Strenghening Scenarios Into Requirements

P
=

By water
e

!

5.:@%
A y

‘Customer Analyst
requirements analysis

2015-06-15 —

163

~10-

Universal LSC: Example

Buy water
e
Invariant_I: _strict

o] [cons
;

16/31

Requirements on Requirements Specifications

A requirements specification should be

« correct
correctly represents the wishes/needs of the customer,

« complete
requirements (existing in somebody's head, or a document, or) should be
present,

o relevant
— things which are not relevant to the project should not be constrained,
« consistent, free of contradictions

— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

« neutral, abstract
— a requirements specification does not constrain the real

ion more than necessary,

5 e traceable, comprehensible
. — the sources of requirements are documented, requirements are uniquely identifiable,

« testable, objective
— the final product can objectively be checked for satisfying a requirement,

19731

Shortcut: Forbidden Elements

«fs.m we emt EpSSIRS
e & o ET .d.&u\
m o Mol

Ve | [Comvordoner] [CracePore | [Dspensr

Sbidden Clainects: dFT, JTEA

Requirements on LSC Specifications

 correctness is relative to “in the head of the
customer” — still difficult;

= complete: we can at least define a kind of
relative completeness in the sense of “did

;] o uselessness/vacuity,
we cover all (exceptional) cases?”; - !n,ci\n P s fnbl

« relevant also not analyseable within LSCs;

o determinism may be desired,
« consistency can formally be analysed!

/abstract is relative to the realisation « consistency wrt. domain model.
— s icult;

But LSCs tend to support abstract

specifications; specifying technical details is

tedious. What about LSCs?

« traceable/comprehensible are
meta-properties, need to be established
separately;

« a formal requirements specification, e.g
using LSCs, is immediately
objective/testable.

< Sgvhem buloviy nas SRSLES Prcly

Modelling Idiom: Enforcing Order

AM: _invariant_I: _permissive

L [I

LSCs vs. MSCs

18/31

213

LSCs vs. MSCs

Recall: Most severe drawbacks of, e.g., MSCs:

o unclear interpretation: example scenario or invariant?

o unclear activation: what triggers the requirement?

© unclear progress requirement: must all messages be observed?
o conditions merely comments

© no means (in language) to express forbidden scenarios

mse cvent_onderng

(ITU-T, 2011)

b 27

Recall: Software Specification Example

o
S Geldautomat S

Alphabet:

« M - dispense cash only,

e C - return card only,

o M - dispense cash and return card.

o Customer 1 “don't care”

M
AE,Q_DE o)
« Customer 2 “you choose, but be consistent”
Customer 2
(M.C) or (C.M) 00

- o Customer 3 “consider human errors”

(c.M)

0 25/31

Pushing It Even Further

(Harel and Marelly, 2003)

10 - 2015.06-15 — Scrawbacks —

2331
Recall: Formal Mcé_iatim\:
o
alidaon
Requirements.
[#A] ={(M.C.[-]). (C-M.[-])} ?
Development
vaa frachi Process/
2 Project
- N Management
Design
[#2] = {(M.T.C.[-). (C.Te. M, [- 1)} ?
?
Implementation
0 26/

Recall

Requirements Engineering Wrap-Up

: Formal ,we%c&a.BEmE

<]

Requirements

[A] = {(MC.[-10), (C-M,[-1)} ?
Development

Process/

2431

Final Remarks

2015.-06-15 - Swrapup

10

2015.06-15

10

One sometimes distinguishes:
» Systems Engineering (develop software for an embedded controller)

Requirements typically stated in terms of system observables (“press WATER button'
needs to be mapped to terms of the software!

« Software Engineering (develop software which interacts with other software)

Requirements stated in terms of the software.

We touched a bit of both, aimed at a general discussion.

o Once again (can it be mentioned too often?):
Distinguish domain elements and software elements
and (try to) keep them apart to avoid confusion.

References

2731

3031

Systems vs. Software Engineering

- 10 - 2015-06-15 — Swrapup —

A Classification of Software

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of

software (my interpretation, my examples):

be specified; tend to be small; can be developed once and for a

in feedback loop; specificat

domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic ler, plant automatisation,

« E-programs: embedded in socio-technical systems; in particular involve humans;
specification often not clear, not even known; can grow huge; delivering the software
induces new needs

« S-programs: solve mathematical, abstract problems; can exactly (in particular formally)

Examples: sorting, compiler (1), compute 7 or v/, cryptography, textbook examples, ..

« P-programs: solve problems in the real world, e.g. read sensors and drive actors, may be

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,

References

10 - 2015.06-15 ~ main —

Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag,

ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.
Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.
Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition

2831

3l

Literature Recommendation

615 — Swrapup -

- 10— 201

Aus der Praxis
von Klassisch bis agil

(Rupp and

ie SOPHISTen, 2014)

2931

