— 09 - 2015-06-11 — main —

Softwaretechnik / Software-Engineering

Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 09 — 2015-06-11 — Sprelim —

Last Lecture:

e Scenarios and Anti-Scenarios

e User Stories, Use Cases, Use Case Diagrams

e LSC: abstract and concrete syntax

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.

Which are the cuts and firedsets of this LSC?
Construct the TBA of a given LSC body.
Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?

Formalise this positive scenario/anti-scenario/requirement using LSCs.

Content:

Excursion: automata accepting infinite words
Cuts and Firedsets, automaton construction
existential LSCs, pre-charts, universal LSCs

Requirements Engineering: conclusions

Recall: LSC Body Syntax

LSC Body Example

o Lilio=<hy<hao=<liz hao=<lia loo=<la1 <l2o<l23, I30=<131<I32,
lig <12, lao<li2, losg<liz, Ilz2<lia, l22~l31,

o T={{lio, 011,012,013, 014}, {l2.0: 12,1, 12,2, 12,3}, {I5.0, I5.1, I3.2} },

o Msg={(l1,1,4,l2.1),(l22, B, l12), (l22,C, l3.1), (l2,3, D, l1,3), (I3,2, E, l1,4) }
Cond = {({l2,2},c2 Aes)},

o Loclnv = {(l1,1,0,c1,l1,2,0)}

— 08 — 2015-06-08 — Slscsyn —

— 09 — 2015-06-11 — main —

LSC Semantics

— 09 — 2015-06-11 — main —

2978

4/50

The Big Picture

e Recall: decision tables
e By the standard semantics, a decision table T is software,
[T] = {0y = 0, =2 55+ | -+ } is a set of computation paths.

e Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

T
Lo

o We want the same for LSCs.

7 e We will give a procedure to construct for each LSC . an automaton B(.Y).

= The language (or semantics) of . is the set of comp. paths accepted by B(.¥).

% Thus an LSC is also software.

. e : computation paths may be infinite — Blichi acceptance.
Excursion: Symbolic Biichi Automata

From Finite Automata to Symbolic Biichi Automata

— 09 — 2015-06-11 — Stba —

A: r={01} B: > = {0,1}
@ 0 Biichi @ 0
1 infinite words I
lﬁj“ﬁ 0.(4.0)* W= 01010101 éiﬂ‘v(.g)
_ w
w=0i01 & Lowy(k) L"‘V@) o.(10)
wW=Oll &Ly A) ¥ ={0,1}
symbolic 'l '
W= o“¢

ﬂu(OIﬂ“ osyméﬂfz 8)

w=01001000.. & Loy (B’

Asym: even(aj) Y= ({ZL’} — IN) Bsym- eq)en(g;) = ({III} — IN)

Biichi
@ A .uCI @

infinite words

odd(z) /62 odd(z)
w= (xs-Z)(x:Z\(x:(b) & b‘va(“(‘y.)
v o= (x=2) (x=3)(x 2)) & Loy (Aayn)

L“"‘A(A{)»-Ff %1 %] V]f;“w lx N andd (s(,-,,); 7/50

Symbolic Biichi Automata

— 09 — 2015-06-11 — Stba —

Definition. A Symbolic Biichi Automaton (TBA) is a tuple

= (C,Q, qini, —, Qr)
where
e C is a set of atomic propositions,
e () is a finite set of states,
® @ini € Q is the initial state,

e - CQx®(C) x Q is the finite transition relation.

Each transitions (g,,q") € — from state q to state ¢ is labelled with
a formula ¢ € ®(C).

e Qr C Q is the set of fair (or accepting) states.

Run of TBA

— 09 — 2015-06-11 — Stba —

Definition. Let B = (C, @, ¢ini, —, @F) be a TBA and
w = 01,02,03, € (C—)B)w

an infinite word, each letter is a valuation of Cj.

An infinite sequence

0=q0,q1,q2,-.- € Q~

of states is called run of B over w if and only if
® 4o = Yini,

o for each i € INg there is a transition (g;, ¥;, ¢i+1) €— s.t. 0; | ¥;.

we (x=0)(n=/10n =%)lic=5)(x = § > =9)...

Biym: Y={x N
even(x) ({e} > M)

Example: (ar)

R= 71/72/ M 9, IQ%(?;I’)’“_ 9/50

The Language of a TBA

— 09 — 2015-06-11 — Stba —

Definition.
We <Y TBA B = (C7 Q7 Qini, =75 QF) 7
w = (0;)ien, € (C — B)¥ if and only}

0= (qi)ieny

over w such that fair (or accepting) states are visited infinitely often by
o, i.e., such that
Vi € Ny E'_]>’qu€QF

We call the set Lang(B) C (C — B)“ of words that are accepted by B
the language of 5.

10/50

Example

| run: 9 = qo,q1,q2,--- € Q* s.t. o, =1, ¢ € No.

I
©
3
2
(%]

I
- -
i

7
&
<
F2]
=
S
&

I
(=)}
3

|

I
=

5

£

I
—
pa

!

&

<

s

=

S

N

I

(=)}

o

|

LSC Semantics: TBA Construction

11/50

12/50

LSC Semantics: It’s in the Cuts!

— 09 — 2015-06-11 — Scutfire —

Definition. Let ((£,=<,~),Z, Msg, Cond, Loclnv,®) be an LSC body.
A non-empty set) # C C L is called a cut of the LSC body iff C

e is downward closed, i.e.
Vi,ll e Lol eCANI=I = 1€C,

e is closed under simultaneity, i.e.
Vil cLel' cCANl~I = 1€, and

e comprises at least one location per instance line, i.e.
VieZeCNIH#Q.

The temperature function is extended to cuts as follows:

e(C) =

hot ,if3leCe (Al € Cel=<1)AO()=hot
cold , otherwise

that is, C' is hot if and only if at least one of its maximal elements is hot.

13/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

® @ &) @

| 0 # C C £ — downward closed — simultaneity closed — at least one loc. per instance line

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

A Successor Relation on Cuts

’ 0 # C C £ — downward closed — simultaneity closed — at least one loc. per instance line

14/50

— 09 — 2015-06-11 — Scutfire —

The partial order “<" and the simultaneity relation “~" of locations
induce a direct successor relation on cuts of £ as follows:

Definition.
Let C C L bet a cut of LSC body ((£, X, ~),Z, Msg, Cond, Loclnv, ©).

A set) = F C L is called fired-set F of C if and only if

e CNF=0and CUFis a cut, i.e. F is closed under simultaneity,
all locations in F are direct <-successors of the front of C, i.e.
VieFIl ceCol' <INRI" cCol' <1"),

locations in F, that lie on the same instance line, are pairwise unordered, i.e.
Vil e Fe(BIeZe{l,l'}CI) = IAUNl A1,

for each asynchronous message reception in F, the corresponding sending is
already in C,

V(,E,lI'))eMsgel' € F — leC.
The cut ¢’ = CUF is called direct successor of C via F, denoted by C' ~ = C'.

15/50

Successor Cut Example

— 09 — 2015-06-11 — Scutfire —

CNF=0— CUFisa cut — only direct <-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

Successor Cut Example

— 09 — 2015-06-11 — Scutfire —

CNF=0— CUJFisa cut — only direct <-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

16/50

16/50

Language of LSC Body: Example

~(F?VGIv G?)

The TBA B(%) of LSC Z over C and € is (C, Q, qini, —, QF) with

— 09 — 2015-06-11 — Scutfire —

F?A=(GIAGY)

s at cut q
'lljezit(Q)-' 0‘ _

“what allows us to Yprog(q,4"): e

[

\

\

7] I

legally exit” ~—~— N— “characterisation l B c |
N O

|

|

|

4?
;

|
% e (is the set of cuts of .Z, g, is the instance heads cut,
S e C=CUE&q, where £ = {E\, E? | E € £},
= e — consists of loops, progress transitions (from ~x), and legal exits (cold cond./local inv.),
2 e Qp={CeQ|O(C)=coldVvC = L} is the set of cold cuts and the maximal cut.
= P
\
c‘: 17/50
TBA Construction Principle
Recall: The TBA B(¥) of LSC £ is (C, @, Gini, —, QF) with
e @ is the set of cuts of .Z, qiy; is the instance heads cut,
e C=CU{E\E? | E €&},
e — consists of loops, progress transitions (from ~ x), and legal exits (cold cond./local inv.),
o F={CeQ|O(C)=-coldV C = L} is the set of cold cuts.
So in the following, we “only” need to construct the transitions’ labels:
== {(a, Y100p (), @) | 4 € QYU {(4,%prog(9,4"),d') | a ~7 ¢’} U{(4q,Yewit (), £) | g € Q}
Yioop(q): “what o [= [& |
allows us to stay »
”

18/50

TBA Construction Principle

So in the following, we “only” need to construct the transitions’ labels:

), d) | a~F ¢} U{(q,Vewit(q), L) | g € Q}

—={(q, 7wz’looz)(q)vq) | ¢ € Q}U{(q, Yprog(q,

=% (q)

Loclnv

Dloop(a) = P (@) A e™ (@) AYESE™ ()

"z}prug (Q7 Qn) =

wczit() - hot Cond Loclnv,e
(¢?ot () Lol((:jlnv(Q)) "Z);mﬂog ((L (In) A wcmd (‘L qn) A ¢Co|d ((L qn)
00op CO
v Vlgign 2%:;([1’ i) A d)?)%g(%qn) = ¢M2(q, qn)
(~temd™* (g,) V =030 (q, a)) NS (g, an) A o™ (a4, an)
T
: e
5 true CD < A |
! —ik=y "
3 | : :
v ‘ ‘ ' 1950
Loop Condition :
wowe of 2
fredsck, w8 Vioop (a) = WM (q) A YESI™ (q) A DL3I™ (q) Lzl
is obbyvee 4_9 o)
o PME(g) = 2V ciey V(g @) A (strict = Ayce,omsgier %) acpac
Locl 3(3;#‘-, F’} N
° ,¢,BOC nv(q) = /\Z:(Z,L,%,ZQL/)ELocInv, ©(£)=0, £ active at q$ (S*M'G/

A location [is called front location of cut C if and only if A1’ € Lol <1’

Local invariant (lo, to, ¢, 11, 1) is active at cut (!) ¢ if and only if o <1 <y for some
front location [of cut (!) ¢

o Msg(F)={E!|(,E,lI'))eMsg, L€ F}U{E?|(l,E,l') € Msg, I' € F}
<~
o Msg(F1,...,Fn) = U <ic, Msg(Fi)
]
T

| b | S
] (>? ‘/7"‘7—:F ¢ i
1’ 2 (D! vG_?/ ¢ {/\Te; }
ﬁ« 7 |
§ é’?y ?/l-'&? -—— }
g Lﬁ'{ﬁ_,
é De/lé? -\ \ 1

Progress Condition

— 09 — 2015-06-11 — Slscsem —

— 09 — 2015-06-11 — Slscsem —

@ hot (@, i) = YMB(q, qn) AYES (g, qn) A Prot™® (gn)
he wogs of frolet 3, wot wsg. @uSinabin. of any of,
———— K—ML"k———ﬁ

Msg 1(%\‘/#6 O/Z
o V(4,4) = Nyemsganag) ¥ N Nizi Noecvss(aanwsganay ¥ @
A (strict = Ny e, omse(c))\mse(rs) %) b s e
S,
Cond — loce e, 1 He
o g™ (q,qi) = /\ry:(L,qb)eCond, O(v)=6, LN(q;\q)#0 ¢ -
<~ T foé 7;\2

Loclnv, _
o Y, g, q1) = /\)\:(l,L,d),l’,L’)eLoclnv, O(A\)=0, X e-active at q; ¢
Local invariant (lo, to, ¢, 11, 1) is e-active at g if and only if

o lg <1<l or
o l=IlpNig=we, or

el=hAun=e) nJ[6| I“ ‘)
|
for some front location [of cut (!) q. —a |
(/7(3717\/ }
N — o B C ‘
ca N c3 |
@ © |
1-4-—; ~ D\ }
DA1£2 =] 1 E ‘
i ‘
| [|
voooN 21/50
Example
.
|
F |
é s g }
i | |
/ i | |
ot ?
g
1
s oxlisive

22/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC ¥ = (((£, =%, ~),Z,Msg, Cond, Loclnv, ©), acg, am, © &) consist of
e body ((£,=,~),Z,Msg, Cond, Loclnv, 9),

e activation condition aco € ®(C), strictness flag sirict (otherwise called permissive)

e activation mode am € {initial, invariant},

e chart mode existential (©¢ = cold) or universal (6.« = hot).

Concrete syntax:

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

or st
/
e
N C

AM: ir}itial I: permissive 777[77
I
Cn I & 1%
! l
! I
l — !
!] l
I
! l
| p

\
\ \
I I
I
| G }
! \
! [
! |

23/50

A full LSC Z = (((£,=,~),Z,Msg, Cond, Loclnv, ©), acy, am,© &) consist of

body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C), strictness flag sirict (otherwise called permissive)

e activation mode am € {initial, invariant},

chart mode existential (© ¢ = cold) or universal (6« = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

Oy am = initial am = invariant

- | JweWeuw Each JweW Ik € Ngew” = ac A

8 w” | Y0, Co) Aw/1 € Lang(B(Z)) | w" | g (0, Co) Aw/k+1 € Lang(B(£))
" VweWeuw’ | ac = Yw €W Vk € Ny e w* £ ac =

2 w® = g5ed(0,Co) Aw/1 € Lang(B(£)) | w* |= (0, Co) Aw/k+1 € Lang(B(£))

where ac = aco AP

Cond

(@, Co) A ¢pMs&(B, Co); Co is the minimal (or instance heads) cut.

23/50

— 09 - 2015-06-11 — main —

References

References

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.
ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

— 09 - 2015-06-11 — main —

49/50

50/50

