Softwaretechnik / Software-Engineering

Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Scenarios and Anti-Scenarios
- User Stories, Use Cases, Use Case Diagrams
- LSC: abstract and concrete syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Which are the cuts and firedsets of this LSC?
 - Construct the TBA of a given LSC body.
 - Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?
 - Formalise this positive scenario/anti-scenario/requirement using LSCs.

• Content:

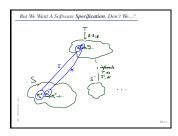
- Excursion: automata accepting infinite words
- Cuts and Firedsets, automaton construction
- existential LSCs, pre-charts, universal LSCs
- Requirements Engineering: conclusions

3/50

LSC Semantics

- 09 - 2015-06-11 - main -

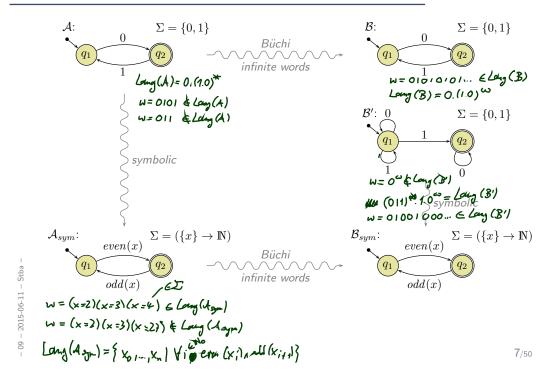
- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $[\![T]\!] = \{\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \} \text{ is a set of computation paths}.$
- Recall: Decision tables as software specification:



- We want the same for LSCs.
- We will give a **procedure** to construct for each LSC $\mathscr L$ an **automaton** $\mathcal B(\mathscr L)$. The language (or semantics) of $\mathscr L$ is the set of comp. paths **accepted** by $\mathcal B(\mathscr L)$. Thus an LSC is also software.
- ullet Problem: computation paths may be infinite ullet Büchi acceptance.

5/50

Excursion: Symbolic Büchi Automata



Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$\mathcal{B} = (\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$$

where

- $oldsymbol{\cdot}$ C is a set of atomic propositions,
- Q is a finite set of states,
- $q_{ini} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \Phi(\mathcal{C}) \times Q$ is the finite transition relation. Each transitions $(q, \psi, q') \in \rightarrow$ from state q to state q' is labelled with a formula $\psi \in \Phi(\mathcal{C})$.
- $Q_F \subseteq Q$ is the set of **fair** (or accepting) states.

Definition. Let $\mathcal{B} = (\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ be a TBA and

$$w = \sigma_1, \sigma_2, \sigma_3, \dots \in (\mathcal{C} \to \mathbb{B})^{\omega}$$

an infinite word, each letter is a valuation of $C_{\mathcal{B}}$.

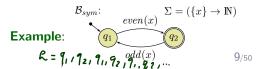
An infinite sequence

$$\varrho = q_0, q_1, q_2, \ldots \in Q^{\omega}$$

of states is called run of $\mathcal B$ over w if and only if

- $q_0 = q_{ini}$,
- for each $i \in \mathbb{N}_0$ there is a transition $(q_i, \psi_i, q_{i+1}) \in \to$ s.t. $\sigma_i \models \psi_i$.

w= (x=0)(x=/1(x=4)(x=5)(x=8)(x=9) ...



-09 - 2015-06-11 - S

The Language of a TBA

 ϱ , i.e., such that

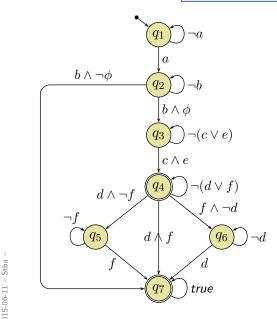
Definition.

We say TBA
$$\mathcal{B}=(\mathcal{C},Q,q_{ini},\rightarrow,Q_F)$$
 ccepts the word $w=(\sigma_i)_{i\in\mathbb{N}_0}\in(\mathcal{C}\rightarrow\mathbb{B})^\omega$ if and only \mathcal{B} has a run

over \boldsymbol{w} such that fair (or accepting) states are $\boldsymbol{\text{visited}}$ infinitely often by

$$\forall i \in \mathbb{N}_0 \ \exists j > i : q_j \in Q_F.$$

We call the set $Lang(\mathcal{B}) \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ of words that are accepted by \mathcal{B} the **language of** \mathcal{B} .



11/50

LSC Semantics: TBA Construction

- 09 - 2015-06-11 - main -

Definition. Let $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$ be an LSC body.

A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a **cut** of the LSC body iff C

• is downward closed, i.e.

$$\forall l, l' \in \mathcal{L} \bullet l' \in C \land l \leq l' \implies l \in C,$$

• is closed under simultaneity, i.e.

$$\forall l, l' \in \mathcal{L} \bullet l' \in C \land l \sim l' \implies l \in C$$
, and

• comprises at least one location per instance line, i.e.

$$\forall\,I\in\mathcal{I}\bullet C\cap I\neq\emptyset.$$

The temperature function is extended to cuts as follows:

$$\Theta(C) = \begin{cases} \mathsf{hot} & \text{, if } \exists \, l \in C \bullet (\nexists \, l' \in C \bullet l \prec l') \land \Theta(l) = \mathsf{hot} \\ \mathsf{cold} & \text{, otherwise} \end{cases}$$

that is, C is **hot** if and only if at least one of its maximal elements is hot.

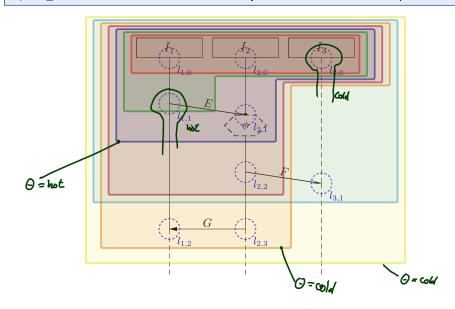
13/50

Cut Examples

 $\emptyset \neq C \subseteq \mathcal{L} - \text{downward closed} - \text{simultaneity closed} - \text{at least one loc. per instance line}$

-06-11 - Scutfixe -

 $\emptyset
eq C \subseteq \mathcal{L}$ — downward closed — simultaneity closed — at least one loc. per instance line



14/50

A Successor Relation on Cuts

The partial order " \preceq " and the simultaneity relation " \sim " of locations induce a **direct successor relation** on cuts of $\mathcal L$ as follows:

Definition

Let $C \subseteq \mathcal{L}$ bet a cut of LSC body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$. A set $\emptyset \neq \mathcal{F} \subseteq \mathcal{L}$ is called **fired-set** \mathcal{F} of C if and only if

- $C \cap \mathcal{F} = \emptyset$ and $C \cup \mathcal{F}$ is a cut, i.e. \mathcal{F} is closed under simultaneity,
- ullet all locations in ${\mathcal F}$ are direct \prec -successors of the front of C, i.e.

$$\forall l \in \mathcal{F} \exists l' \in C \bullet l' \prec l \land (\nexists l'' \in C \bullet l' \prec l''),$$

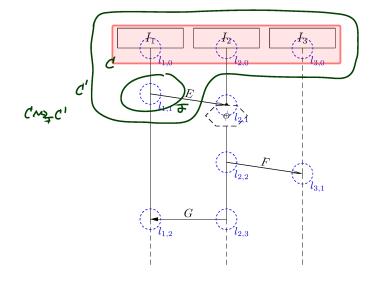
 \bullet locations in \mathcal{F} , that lie on the same instance line, are pairwise unordered, i.e.

$$\forall l \neq l' \in \mathcal{F} \bullet (\exists I \in \mathcal{I} \bullet \{l, l'\} \subseteq I) \implies l \not\preceq l' \land l' \not\preceq l,$$

• for each asynchronous message reception in \mathcal{F} , the corresponding sending is already in C,

$$\forall (l, E, l') \in \mathsf{Msg} \bullet l' \in \mathcal{F} \implies l \in C.$$

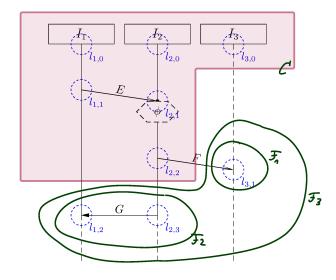
The cut $C' = C \cup \mathcal{F}$ is called **direct successor of** C **via** \mathcal{F} , denoted by $C \leadsto_{\mathcal{F}} C'$.



16/50

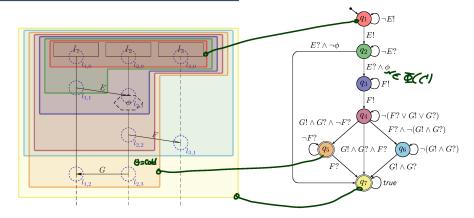
Successor Cut Example

 $C\cap \mathcal{F}=\emptyset \longrightarrow C\cup \mathcal{F} \text{ is a cut } \longrightarrow \text{only direct } \prec\text{-successors} \longrightarrow \text{same instance line on front pairwise unordered} \longrightarrow \text{sending of asynchronous reception already in}$



- 09 - 2015-06-11 - Scutfire -

Language of LSC Body: Example



The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} over C and \mathcal{E} is $(\mathcal{C},Q,q_{ini},\to,Q_F)$ with

- ullet Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \mathcal{E}_{!?}$, where $\mathcal{E}_{!?} = \{E!, E? \mid E \in \mathcal{E}\}$,

- 09 - 2015-06-11 - Scutfire

- \rightarrow consists of loops, progress transitions (from $\leadsto_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $Q_F = \{C \in Q \mid \Theta(C) = \operatorname{cold} \vee C = \mathcal{L}\}$ is the set of cold cuts and the maximal cut.

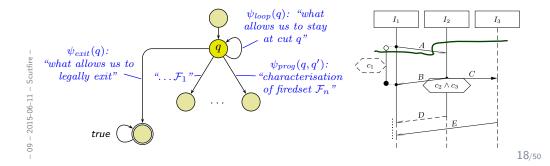
TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathcal{L} , q_{ini} is the instance heads cut,
- $C = C \cup \{E!, E? \mid E \in \mathcal{E}\},\$
- \rightarrow consists of loops, progress transitions (from $\leadsto_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F} = \{C \in Q \mid \Theta(C) = \operatorname{cold} \lor C = \mathcal{L}\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

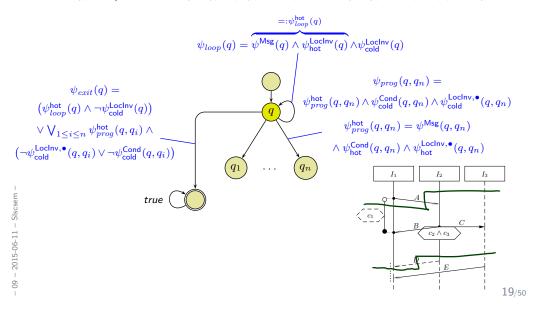
$$\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \leadsto_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$$

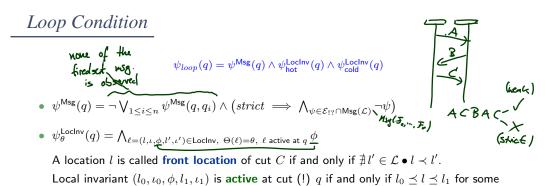


17/50

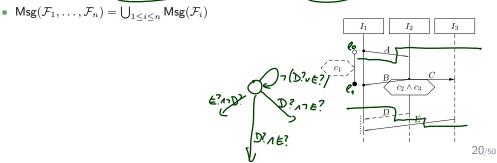
So in the following, we "only" need to construct the transitions' labels:

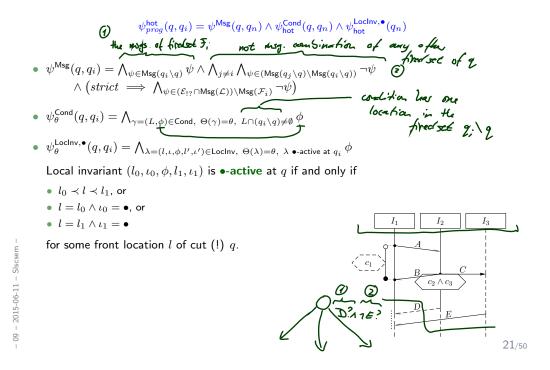
$$\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \leadsto_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$$



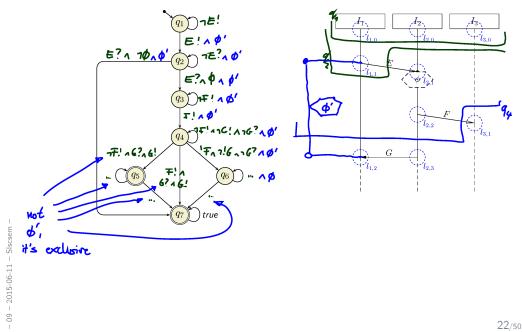


front location l of cut (!) q.





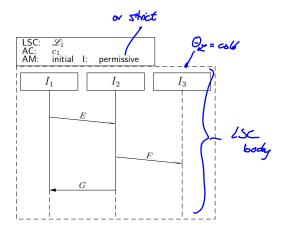
Example



A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- **body** $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$,
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential $(\Theta_{\mathscr{L}} = \text{cold})$ or universal $(\Theta_{\mathscr{L}} = \text{hot})$.

Concrete syntax:



Finally: The LSC Semantics

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- **body** $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$,
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential $(\Theta_{\mathscr{L}} = \text{cold})$ or universal $(\Theta_{\mathscr{L}} = \text{hot})$.

A set of words $W\subseteq (\mathcal{C}\to\mathbb{B})^\omega$ is accepted by \mathscr{L} if and only if

	$\Theta_{\mathscr{L}}$	am = initial	am = invariant
06-11 – Slscsem –	cold	$\exists w \in W \bullet w^0 \models ac \land$ $w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$\exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land $ $w^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathcal{L}))$
	hot	$\forall w \in W \bullet w^0 \models ac \implies$ $w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$\forall w \in W \ \forall k \in \mathbb{N}_0 \bullet w^k \models ac \implies$ $w^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$

where $ac = ac_0 \wedge \psi^{\mathsf{Cond}}_{\mathsf{cold}}(\emptyset, C_0) \wedge \psi^{\mathsf{Msg}}(\emptyset, C_0)$; C_0 is the minimal (or instance heads) cut.

- 09 - 2015-06-11 - Slscsem -

23/50

References

09 - 2015-06-11 - main -

49/50

References

Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag. ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

– 09 – 2015-06-11 – main –