
–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 07: Formal Methods for

Requirements Engineering

2015-05-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

You Are Here

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

2/54

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

3/54

L
1
:

2
0
.4
.,
M
o

In
tr
o
d
u
ct
io
n

T
1
:

2
3
.4
.,

D
o

L
2
:

2
7
.4
.,
M
o

L
3
:

3
0
.4
.,

D
o

L
4
:

4
.5
.,
M
o

D
ev
el
o
p
m
en
t

P
ro
ce
ss
,
M
et
ri
cs

T
2
:

7
.5
.,

D
o

L
5
:

1
1
.5
.,
M
o

-
1
4
.5
.,

D
o

L
6
:

1
8
.5
.,
M
o

L
7
:

2
1
.5
.,

D
o

-
2
5
.5
.,
M
o

-
2
8
.5
.,

D
o

R
eq
u
ir
em

en
ts

E
n
g
in
ee
ri
n
g

T
3
:

1
.6
.,
M
o

-
4
.6
.,

D
o

L
8
:

8
.6
.,
M
o

L
9
:

1
1
.6
.,

D
o

L
1
0
:

1
5
.6
.,
M
o

D
es
ig
n
M
o
d
el
lin

g
&

A
n
al
ys
is

T
4
:

1
8
.6
.,

D
o

L
1
1
:

2
2
.6
.,
M
o

L
1
2
:

2
5
.6
.,

D
o

L
1
3
:

2
9
.6
.,
M
o

Im
p
le
m
en
ta
ti
o
n
,

T
es
ti
n
g

T
5
:

2
.7
.,

D
o

L
1
4
:

6
.7
.,
M
o

L
1
5
:

9
.7
.,

D
o

L
1
6
:

1
3
.7
.,
M
o

F
or
m
al

V
er
ifi
ca
ti
o
n

T
6
:

1
6
.7
.,

D
o

L
1
7
:

2
0
.7
.,
M
o

T
h
e
R
es
t

L
1
8
:

2
3
.7
.,

D
o

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Contents & Goals
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
p
re
li
m

–

4/54

Last Lecture:

• requirements engineering basics, “the natural language case”

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a rule, a decision table?

• What is the interleaving, collecting, update semantics?

• Analyse this rule for: vacuous, redundant, complete, consistent

• In what sense can decision tables serve as requirements specification language?

• Formalise this requirement with a decision table.

• What does this have to do with the previous lecture?

• Content:

• definition decision table syntax and interleaving semantics,

• definition tables as requirements specification,

• interesting/useful properties of decision tables

Recall: Formal Methods
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
re
fm

–

5/54

Formal Methods (in the Software Development Domain)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

20/37

... back to “ ‘technological paradise’ where ‘no acts of God can be permitted’

and everything happens according to the blueprints”.

(Kopetz, 2011; Lovins and Lovins, 2001)

Definition. [Bjørner and Havelund (2014)]

A method is called formal method if and only if its techniques and

tools can be explained in mathematics.

Example: If a method includes, as a tool, a specification language, then that

language has

• a formal syntax,

• a formal semantics, and

• a formal proof system.

Formal, Rigorous, or Systematic Development

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

21/37

“The techniques of a formal method help

• construct a specification, and/or

• analyse a specification, and/or

• transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other
tools.

The aim of developing software, either

• formally (all arguments are formal) or

• rigorously (some arguments are made and they are formal) or

• systematically (some arguments are made on a form that can be made formal)

is to (be able to) reason in a precise manner about properties of what is
being developed.” (Bjørner and Havelund, 2014)

Decision tables (DT) are one example for a
formal requirements specification language:

• we give a formal syntax and semantics,

• requirements quality criteria, e.g.
completeness, can be formally defined,

• thus for a DT we can formally argue
whether it is complete or not,

• (some) formal arguments can be done
automatically (→ tool support).

westphal
Bleistift

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
re
fm

–

6/54

... so, off to “ ‘technological paradise’ where [...]
everything happens according to the blueprints”.

(Kopetz, 2011; Lovins and Lovins, 2001)

Formal Specification and Analysis of Requirements:

Decision Tables for Example

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

7/54

Decision Tables
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

8/54

Definition. [Decision Table] Let C be a set of (atomic) conditions and A

a set of actions.

(i) The set Φ(C) of premises over C consists of the terms defined by
the following grammar: ϕ ::= true | c | ¬ϕ1 | ϕ1 ∨ ϕ2, c ∈ C.

(ii) A rule r (over C and A) is a pair (ϕ, α), written ϕ → α, which
comprises

• a premise ϕ ∈ Φ(C) and

• a finite set α ⊆ A of actions (the effect).

(iii) Any finite set T of rules (over C and A) is called decision table
(over C and A).

Decision Tables: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

9/54

This might’ve been the specification of lecture hall 101-0-026’s ventilation system:

• Conditions:

C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• Actions:

A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• Rules:

• r1 = b ∧ off → {go}

• r2 = b ∧ on → {stop}

• Decision table:

T = {r1, r2}.

westphal
Bleistift

westphal
Bleistift

And Where’s The Table?
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

10/54

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

From the table to the rules:

• r1 = b ∧ on ∧ ¬off → {go}

• r2 = b ∧ ¬on ∧ off → {stop}

westphal
Bleistift

And Where’s The Table?
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

10/54

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

r3

∗
-
-

-
-

From the table to the rules:

• r1 = b ∧ on ∧ ¬off → {go}

• r2 = b ∧ ¬on ∧ off → {stop}

• r3 = ¬on ∧ ¬off → ∅

westphal
Bleistift

Decision Tables vs. Rules In General
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

11/54

T : decision table r1 · · · rn

c1 description condition 1 v1,1 · · · v1,n
..
.

..

.
..
.

. . .
..
.

cm description condition m vm,1 · · · vm,n

a1 description action 1 w1,1 · · · w1,n

..

.
..
.

..

.
. . .

..

.
ak description action k wk,1 · · · wk,n

vi,j ∈ {−,×, ∗}, wi,j ∈ {−,×}

• C = {c1, . . . , cm}, A = {a1, . . . , ak}

• ri = F (v1,i, ci) ∧ · · · ∧ F (vm,i, cm) → {aj | wj,i = ×}}, F (v, c) =











c , if v = ×

¬c , if v = −

true , if v = ∗
Recall:

∧
1≤j≤m F (vj,i, ci) = true by definition.

• T = {r1, . . . , rn} (multiple tables T1, . . . , Tn denote one set of rules)

• From rules to table: use disjunctive normal form of ϕ.

westphal
Bleistift

By the Way: Decision Tables as Business Rules
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

12/54

T1: cash a cheque r1 r2 else

c1 credit limit exceeded? × ×
c2 payment history ok? × -
c3 overdraft < 500 e? - ∗

a1 cash cheque × - ×

a2 do not cash cheque - × -

a3 offer new conditions × - -

(Balzert, 2009)

• One customer session at the bank:

σ
{a1,a3}
−−−−−→ σ′

if σ = {c1 7→ 1, c2 7→ 1, c3 7→ 0}.

• clerk checks database state σ,

• database says: credit limit exceeded over 500 e, but payment history ok,

• clerk cashes cheque but offers new conditions.

westphal
Bleistift

Decision Table Standard Semantics
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

13/54

• Let C be a set of conditions and A a set of actions.

• Let Σ := (C → B) be the set of valuations of C, B := {0, 1}.

• Let ϕ ∈ Φ(C) be a premise and σ ∈ Σ. Set:

• σ |= true, for all σ ∈ Σ,

• σ |= c, if and only if σ(c) = 1,

• σ |= ¬ϕ1, if and only if σ 6|= ϕ,

• σ |= ϕ1 ∨ ϕ2, if and only if σ |= ϕ1 or σ |= ϕ2.

Note: In the following, we may use ∧, =⇒ , ⇐⇒ as abbreviations as usual.

• We call a rule r = ϕ → α over C and A enabled in σ if and only if σ |= ϕ.

• Let T be a decision table over C and A. The set JT Kinterleave , the (standard)
interleaving semantics/interpretation of T , consists of the finite or infinite
computation paths

π = σ0

α
1−→ σ1

α
2−→ σ2 · · · , σi ∈ Σ, i ∈ N0,

where ∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Decision Tables: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

14/54

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}, r2 = b ∧ ventilation on → {stop}, T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 = {b 7→ 1, off 7→ 1, on 7→ 0},

σ1 = {b 7→ 1, off 7→ 0, on 7→ 1}

• π2 = σ0

σ0 = {b 7→ 0, off 7→ 1, on 7→ 0}

• and also π3 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2

σ0 = {b 7→ 1, off 7→ 1, on 7→ 0},

σ1 = {b 7→ 1, off 7→ 1, on 7→ 0}

• also π4 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2 . . .

σi = {b 7→ 1, off 7→ 1, on 7→ 0}, i ∈ N0

• but not σ0

{go}
−−−→ σ1

{go,stop}
−−−−−−→ σ2

σ0 = {b 7→ 0, off 7→ 1, on 7→ 0},

westphal
Bleistift

westphal
Bleistift

Isn’t There a Bell Ringing...?
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

15/54

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0
α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpreta-
tion of S.

→ a decision table T is software in the sense of the definition.

(surprise, surprise!?)

But We Want A Software Specification, Don’t We...?
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

But We Want A Software Specification, Don’t We...?
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

• Let T be a decision table over C and A.

• Let S be a software with JSK = {σs
0

αs

1−→ σs
1

αs

2−→ σs
2 · · · , . . . }, σ

s
i ∈ Σs.

• Let I : Σs → (C → B) be an interpretation of conditions C in states Σs, and
M : As → 2A a mapping of events to sets of actions.

• We say S implements T wrt. I and M if and only if

∀σs
0

αs

1−→ σs
1

αs

2−→ σs
2 · · · ∈ JSK • I(σs

0)
M(α1)
−−−−→ I(σs

1) · · · ∈ JT Kinterleaving

• T can be seen as a software specification by setting

JT Kspec := {S | ∃ I,M • S implements T wrt. I and M}.

• Any software S, whose behaviour viewed through I and M is a subset (!) of T ’s
behaviour, satisfies the specification T .

• The computation paths of T are all allowed for the final product S;
what is not a computation path of T is forbidden for the final product.

• The refinement view:
A software S′ which is a refinement of a software S ∈ JT Kspec satisfies specification T .

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Decision Table as Requirements Specification: Examples
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

17/54

How can these I and M look like?

Example:

• Σ1 = C → {0, 1} — a state σ ∈ Σ1 is a (boolean) valuation of the conditions;

I : σ1 7→ σ1, the identity

• Σ2 = {b, V } → B ∪R
+

0 ; σ
2(b) ∈ B (button state), σ2(V) ∈ R

+

0 (voltage at ventilator)

I is defined by:

• I(σ2)(b) = 1 if and only if σ(b) = 1,

• I(σ2)(on) = 1 if and only if σ(V) ≥ 0.7 (ventilator rotates),

• I(σ2)(off) = 1 if and only if σ(V) < 0.7 (voltage too low for rotation).

• Σ3 : internal state of a Java VM running a Java program with global variables b, on, off.

I(σ3)(b) = 1 if and only if value of b in σ is Java’s true.

• In other words: Σs can be everything, as long as you explain/define how to read out
from σs ∈ Σs whether the conditions (here: b, on, off) should be considered 0 or 1 in σ.

Basic Requirements Quality Criteria for DTs

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

18/54

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

19/54

Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct

— it correctly represents the wishes/needs of the customer,

• complete

— all requirements (existing in somebody’s head, or a document, or . . .) should be
present,

• relevant

— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions

— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

• neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,

• traceable, comprehensible

— the sources of requirements are documented, requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked for satisfying a requirement.

Requirements on Specifications and Formal Methods
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

20/54

• correctness is relative to “in the head of
the customer” → still difficult;

• complete: we can at least define a kind
of relative completeness in the sense of
“did we cover all cases?”;

• relevant also not analyseable within
decision tables;

• consistency can formally be analysed!

• neutral/abstract is relative to the
realisation → still difficult;
But formal requirements specification

language tend to support abstract

specifications; specifying technical details is

tedious.

• traceable/comprehensible are
meta-properties, need to be established
separately;

• a formal requirements specification, e.g.
using decision tables, is immediately
objective/testable.

We can formally define
additional quality criteria:

• rules should not be useless or vacuous,

• a deterministic decision table may be
desired,

• rules should be consistent wrt. a domain
model,

Quality Criteria for DTs: Uselessness and Vacuity
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

21/54

Definition. [Uselessness and Vacuity] Let T be a decision table.

• A rule r = ϕ → α is called vacuous (wrt. states Σ) if and only if there
is no state σ ∈ Σ such that

σ |= ϕ.

• A rule r = ϕ → α is called useless (or: redundant) if and only if there
is another (different) rule r′ whose premise ϕ′ is subsumed by ϕ and
whose effect is the same as r’s, i.e. if

∃ r′ = ϕ′ → α′, r′ 6= r • |= ϕ =⇒ ϕ′ ∧ α = α′.

r′ is called subsumed by r.

westphal
Bleistift

Uselessness: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

22/54

Example:

• (c ∧ ¬c) → α is vacuous.

Proposition: any rule with insatisfiable premise is vacuous.

•
T : room ventilation r1 r2 r3 r4

b button pressed? × × - -

off ventilation off? × - ∗ -

on ventilation on? - × ∗ -

go start ventilation × - - -

stop stop ventilation - × - -

• r4 is useless — it is subsumed by r3.

• r3 is not subsumed by r4!

• Proposition: if rule r is given in form of a table then r is not vacuous (yet it may
be subsumed by another rule).

Uselessness: Consequences
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

23/54

• Doesn’t hurt wrt. the final product:

The decision table T with useless rules has the same computation paths
as the one with useless rules removed, thus specifies the same set of software.

• But

• decision tables with useless rules are unnecessarily hard to work with
(read, maintain, . . .).

• May make communication (with customer) harder!

Quality Criteria for DTs: Completeness
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

24/54

Definition. [Completeness] A decision table T is called complete if and
only if the disjunction of all rules’ premises is a tautology, i.e. if

|=
∨

ϕ→α∈T

ϕ.

Completeness: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

25/54

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Completeness: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

25/54

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

• is not complete: there is no rule, e.g., for the case ¬b ∧ on ∧ ¬off .

T : room ventilation r1 r2 r3 r4 r5

b button pressed? × × - ∗ ∗

off ventilation off? × - ∗ × -

on ventilation on? - × ∗ × -

go start ventilation × - - - -

stop stop ventilation - × - - -

• is complete.

Completeness: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

25/54

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

• is not complete: there is no rule, e.g., for the case ¬b ∧ on ∧ ¬off .

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -

stop stop ventilation - × -

• is complete.

Incompleteness: Consequences
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

26/54

• An incomplete decision table may allow too little behaviour (it forbids too much)!

• This very incomplete decision table:

T : room ventilation r1

b button pressed? ×

off ventilation off? ×

on ventilation on? -

go start ventilation ×

stop stop ventilation -

• forbids all actions in case b ∧ ¬on ∧ off is satisfied.

• May not be the intention of the customer!

Quality Criteria for DTs: Determinism
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

27/54

Definition. [Determinism] A decision table T is called deterministic if
and only if the premises of all rules are pairwise disjoint, i.e. if

∀ (ϕi → αi), (ϕj → αj) ∈ T, i 6= j• |= ¬(ϕi ∧ ϕj).

Otherwise, T is called non-deterministic.

Determinism: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

28/54

T : room ventilation r1 r2 r3

b button pressed? × × -

go start ventilation × - -

stop stop ventilation - × -

• is non-determistic: In a state σ with σ |= b, rules r1 and r2 are both enabled.

• Is non-determinism a bad thing in general?

• Just the opposite: one of the most powerful modelling tools we have.

• Read table T as:

• the button may switch the ventilation on
under certain conditions (which I will specify later), and

• the button may switch the ventilation off
under certain conditions (which I will specify later).

• This is quite some less chaos than full chaos!

• We can already analyse the specification, e.g., we state that we do not (under any
condition) want to see on and off executed together.

Non-determism: Consequences
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

29/54

• Good:

• A decision table which is intentionally non-determistic leaves more choices
(more freedom) to the developer.

• Bad:

• A non-determistic decision table leaves more choices to the developer;
even the choice to create a non-deterministic final product.

(Input-)Deterministic final products, i.e. “same data in, same data out”,
are easier to deal with and are usually desired.

• Postponing decisions too long may lead to hasty, bad decisions.

• Another benefit:
deterministic decision tables can be implemented with deterministic
programming languages.

For deterministic decision tables, we can easily devise code generation patterns.

westphal
Bleistift

westphal
Bleistift

Implementing Decision Tables
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
p
ro
p
–

30/54

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

1 i n t b , on , o f f ;
2

3 ex tern vo id go () ; ex tern vo id s top () ;
4

5 vo id (∗ e f f e c t) () = 0 ;
6

7 vo id dt () {
8

9 r e a d b o n o f f () ; // read
10

11 // compute
12 //
13 i f (b && o f f) e f f e c t = go ;
14

15 i f (b && on) e f f e c t = s top ;
16

17 e x e c u t e e f f e c t () ; // w r i t e
18 }

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Domain Modelling for DTs

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

31/54

Domain Modelling
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

32/54

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

• Conditions and actions are abstract entities without inherent connection to the real world.

• Yet we want to use decision tables to model/represent requirements on the behaviour of
software systems, which are used in the real world.

• When modelling real-world aspects by conditions and actions, we should also model
relations between actions/conditions in the real-world
(→ domain model (Bjørner, 2006)).

Example:

• if on and off model opposite output values
of one and the same sensor for “room ventilation on/off”,

• then σ |= on ∧ off never happens in reality,

• in the abstract setting, σ |= on ∧ off is still possible.

T “doesn’t know” that on and off are opposites in the real-world; maybe it should.

• Note: if on and off are outputs of two different, independent sensors,
then σ |= on ∧ off is possible in reality (e.g. due to sensor failures).

“Poor Man’s Domain Modelling”
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

33/54

• Add an action cannot happen.

T : room ventilation r1 r2 r else

b button pressed? × × ∗
off ventilation off? × - ×
on ventilation on? - × ×

go start ventilation × - -
stop stop ventilation - × -
ch cannot happen ×

• Pro:

• old definition of completeness applies

• Con:

• all actions are equal, the action ‘ch’ is more equal

• well-formedness property: no other actions are used with ‘ch’

• ‘ch’ is in the computation paths of T

Conflict Axioms for Domain Modelling
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

34/54

• A conflict axiom for conditions C is a formula ϕconfl ∈ Φ(C).

• Intuition: a conflict axiom characterises all those cases,
i.e. all those combinations of condition values,
which ‘cannot happen’ according to our understanding of the domain.

Standard semantics wrt. conflict axiom:

• Let T be a decision table over C and A. The set JT, ϕconflKinterleave , the (standard)
interleaving semantics/interpretation of T under conflict axiom ϕconfl , consists of the
finite or infinite computation paths

π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · , σi ∈ {σ ∈ Σ | σ 6|= ϕconfl}, i ∈ N0,

where ∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.

• Note: states satisfying ϕconfl do not occur in π.

westphal
Bleistift

westphal
Bleistift

Vacuity, Completeness, Etc. With Conflict Axiom
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

35/54

Definition. [Vacuitiy wrt. Conflict Axiom] A rule r = ϕ → α ∈ T over C and A

is called vacuous wrt. conflict axiom ϕconfl ∈ Φ(C) if and only if the premise
of r implies the conflict axiom, i.e. if |= (ϕ =⇒ ϕconfl).

• Intuition: a vacuous rule would only be enabled in states which ‘cannot happen’.

Definition. [Completeness wrt. Conflict Axiom] A decision table T is called
complete wrt. conflict axiom ϕconfl if and only if the disjunction of the conflict
axiom and all rules’ premises is a tautology, i.e. if

|= ϕconfl ∨
∨

ϕ→α∈T

ϕ.

• Intuition: a complete decision table cares for all cases which ‘may happen’.

• Note: with ϕconfl = false, we obtain the previous definitions as a special case.

Fits intuition: ϕconfl = false means we don’t exclude any states from consideration.

Example: Conflict Axioms
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

36/54

• Let ϕconfl = (on ∧ off) ∨ (¬on ∧ ¬off).

“on models an opposite of off , neither can both be satisfied nor bot non-satisfied”

• Then

T : room ventilation r1 r2 r3

b button pressed? × × -
off ventilation off? × - ∗
on ventilation on? - × ∗

go start ventilation × - -
stop stop ventilation - × -

(on ∧ off) ∨ (¬on ∧ ¬off)

is complete wrt. ϕconfl .

• Advantage: no conditions ‘hidden’ in the else-rule.

Conflict Axiom: Consequences
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

37/54

• Vacuity wrt. ϕconfl :

Same as with uselessness and general vacuity, doesn’t hurt but

May make communication with customer harder!

Implementing vacuous rules is a waste of effort!

• Incompleteness:

An incomplete decision table may allow too little behaviour (it forbids too much)!
May not be the intention of the customer!

Domain Modelling: Consequences (Wikipedia, 2015)
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
a
x
–

38/54

“Airbus A320-200 overran runway at Okecie Intl. Airport on 14 Sep. 1993.”

• to stop a plane after touchdown, there are spoilers and thrust-reverse systems,

• enabling one of those while in the air, can have fatal consequences,

• design decision: the software should block activation in this case,

• spoilers: at least one of (i) and (ii) must be true; thrust-reverse: only if (i) true.

(i) at least 6.3 tons weight on each main landing gear strut,

(ii) the wheels of the plane must be turning faster than 133 km/h.

• domain model: “it cannot happen, that (i) and (ii) are not satisfied on ground”.

14 Sep. 1993:

• tower announ-
ced crosswind,

• actually tailwind,

• anti-crosswind manoeuvre
puts too little weight on
landing gear

• wheels didn’t turn fast due
to hydroplaning.

”L
u
ft
h
an
sa

F
lig
h
t
29
04

cr
as
h
si
te

S
ie
ci
n
sk
i”

by
M
ar
iu
sz

S
ie
ci
n
sk
i
-

h
tt
p
:/
/w

w
w
.a
ir
lin
er
s.
n
et
/p

h
ot
o/
L
u
ft
h
an
sa
/A

ir
b
u
s-
A
32
0-
21
1/
02
65
54
1/
L
/.

L
ic
en
se
d
u
n
d
er

G
F
D
L
vi
a
W
ik
im

ed
ia

C
om

m
on

s
-

h
tt
p
:/
/c
om

m
on

s.
w
ik
im

ed
ia
.o
rg
/w

ik
i/
F
ile
:L
u
ft
h
an
sa

F
lig
h
t
29
04

cr
as
h
si
te

S
ie
ci
n
sk
i.
jp
g

”Flight 29041129” by Anynobody - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Flight 29041129.png#/media/File:Flight 29041129.png

http://www.airliners.net/photo/Lufthansa/Airbus-A320-211/0265541/L/
http://commons.wikimedia.org/wiki/File:Lufthansa_Flight_2904_crash_site_Siecinski.jpg
http://commons.wikimedia.org/wiki/File:Flight_29041129.png#/media/File:Flight_29041129.png

Cross-Checking DTs Against Conflicting Actions

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

39/54

Decision Tables Vs. Conflicting Conditions and Actions
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
re
l
–

40/54

• In certain domains, we may not want to execute certain actions together.

• Let’s declare them to be conflicting and define consistency also wrt. conflicting
actions.

• A conflict relation on actions A is a transitive and symmetric relation ⊆ (A×A).

Definition. [Consistency] Let r = ϕ → α ∈ T be a rule.

(i) r is called consistent with conflict relation if and only if there are no
conflicting actions in α, i.e. if ∄ a1, a2 ∈ α • a1 a2.

(ii) T is called consistent with iff all rules r ∈ T are consistent with .

Example: Conflicting Actions
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
re
l
–

41/54

• Let be the transitive, symmetric closure of stop go.

“actions stop and go are not supposed to be executed at the same time”

T : room ventilation r1

b button pressed? ×

off ventilation off? -

on ventilation on? ×

go start ventilation ×

stop stop ventilation ×

• Rule r1 is inconsistent with .

Conflicting Actions: Consequences
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

n
fl
re
l
–

42/54

• Consistency:

A decision table with inconsistent rules may do harm in operation!

Detecting an inconsistency only late during a project can incur significant cost!

Inconsistencies (in particular in (multiple) decision tables, created and edited by
multiple people, as well as in requirements in general) are not always as obvious
as in the toy examples given here! (would be too easy...)

And is more difficult to handle with the collecting semantics.

Other Semantics for Decision Tables

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

43/54

A Collecting Semantics for Decision Tables
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

44/54

• Let T be a decision table and π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · a state/event sequence.

• Recall: π is a computation path of T (in the interleaving semantics) if

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.

• That is, at each point in time exactly one rule fires, even if T is non-deterministic.

• π is a computation path of T (in the collecting semantics) if and only if

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 =
⋃

ϕ′→α′∈T,

σi|=ϕ′

α′.

That is, all rules which are enabled in σi “fire” simultaneously,
the joint effect is the union of the effects.

• Advantage:

• separation of concerns, multiple (smaller) tables may contribute to a transition,

• no non-determinism between rules: all enabled ones “fire”.

• Disadvantages: conflicts much less obvious.

westphal
Bleistift

Consistency in The Collecting Semantics
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

45/54

Definition. [Consistency in the Collecting Semantics] Let T be a decision
table.
T is called consistent with conflict relation in the collecting
semantics if and only if there are no conflicting actions in the effect
of jointly enabled transitions, i.e. if

∄ϕ1 → α1, ϕ2 → α2, σ ∈ Σ •

σ |= ϕ1 ∧ ϕ2 ∧ ∃ a1, a2 ∈ α1 ∪ α2 • a1 a2.

An Update Semantics for Decision Tables
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

46/54

• By now, we didn’t talk about the effect of actions from A on states.
Actions are uninterpreted.

• Recall the “cash cheque” example:

Here it makes sense, because the next state seen by the bank clerk may be the
result of many database updates by other bank clerks, not only hers/his.

We can also define a semantics with action effects:

• Let C a set of conditions and A a set of actions, Σ = C → B the standard states.

• Let J · Kacteff : A× Σ → Σ which assigns to each pair of (a, σ) of action and state
a new state σ′. σ′ is called the result of applying a to σ.

• Example: on Σ = {b, on, off }, we could define

JgoKacteff (σ) = {b 7→ σ(b), on 7→ 1, off 7→ 0}

JstopKacteff (σ) = {b 7→ σ(b), on 7→ 0, off 7→ 1}

• The interleaving semantics with action effects then requires

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α ∧ σi+1 = JαKacteff (σ).

westphal
Bleistift

An Update Semantics for Decision Tables Cont’d
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

47/54

• In addition, we may want to constrain initial states, i.e. give a set Σini ⊆ Σ.

• Computation paths of T (over Σ) are then required to have σ0 ∈ Σini .

• Example: decision table

T : room ventilation r1
off ventilation off? ×
on ventilation on? -

go start ventilation ×
stop stop ventilation -

with Σini = {{on 7→ 0, off 7→ 1}} has only one computation path, namely

σ0
off
−−→ σ1

with σ1 = {on 7→ 0, off 7→ 1}.

• We can say T terminates.

• This gives rise to another notion of vacuity: r = (on ∧ off) → α is never
enabled, because no state satisfying the premise is ever reached
(even with conflict axiom ϕconfl = false).

Distinguishing Controlled and Uncontrolled Conditions
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

48/54

• For some systems, we can distinguish inputs and outputs.

• In terms of decision tables:

• C is partitioned into controlled conditions Cc and uncontrolled conditions Cu, i.e.
C = Cc ∪̇ Cu.

• actions only affect controlled conditions.

• Example:

• Cc = {on, off } (only the software switches the ventilation on or off),

• Cu = {b} (the button is not controlled by the software, but by the environment, by a
user external to the computer system)

• One more quality criterion, another notion of completeness:

We want the specification to be able to deal with all possible sequences of inputs,
i.e. we require

JT K|Cu
= (Σ|Cu

)ω (or (Σ|Cu
)∗).

Controlled and Uncontrolled Conditions: Example
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
co

ll
–

49/54

• Example:

T : room ventilation r1 r2

b button pressed? × -
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

• is not input sequence complete:

There is no rule enabled if the button is pressed when the ventilation is off.

• Note: it’s not that pressing the button such a state has no effect, but the
system stops to work; it “gets stuck” in that state.

(Because in order to take a transition, we need to have at least one enabled rule.)

Decision Tables: Discussion

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

50/54

Decision Tables Summary
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
d
is
c
–

51/54

• decision tables are one (very simple) example for a formal requirements
specification language with

• formal syntax (there are even two: the formula and the table notation)

• formal semantics (also multiple: interleaving, collecting, update)

• a formal proof system — naja, not a dedicated one

• a requirements specification in form of decision tables allows us to formally
reason about properties of what is being developed.

We can, e.g., prove that a decision table is complete. (Automatically?)

• Whether a decision table is useful in a particular software development project (of
course) depends on the project.

• Like many formal specification language,

• a decision table may not be the right tool for all problems,

• it may be tedious to specify all requirements using decision tables — don’t do that then.

• One particular drawback of decision tables:
they don’t scale so well in the number of conditions.

Speaking of Formal Methods
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
d
is
c
–

52/54

“Es ist aussichtslos, den Klienten mit formalen Darstellungen zu kommen; [...]”
(“It is futile to approach clients with formal representations”)

(Ludewig and Lichter, 2013)

ϕ → α

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

. . .

Customer Developer

here, just check
and update if

needed
WAT?!

• . . . of course it is — vast majority of customers is not trained in formal methods.

Speaking of Formal Methods
–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et
d
is
c
–

52/54

“Es ist aussichtslos, den Klienten mit formalen Darstellungen zu kommen; [...]”
(“It is futile to approach clients with formal representations”)

(Ludewig and Lichter, 2013)

ϕ → α

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

. . .

Customer Developer

here, just check
and update if

needed
WAT?!

• . . . of course it is — vast majority of customers is not trained in formal methods.

• formalisation is (firstly) for developers — analysts have to translate for customers.

• formalisation is the description of the analyst’s understanding, in a most precise form.

• precision: whoever reads it whenever to whomever, the meaning will not change.

• Recommendation: (Course’s Manifesto?)

• use formal methods for the most important/intricate requirements,

• use formalisms that you know (really) well,

• you may use different formalisms for different requirements (if you know what you’re doing!)

• trying to formalise all requirements is in most cases futile.

References

–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

53/54

References
–
0
7
–
2
0
1
5
-0
5
-2
1
–
m
a
in

–

54/54

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements

Engineering. Spektrum, 3rd edition.

Bjørner, D. (2006). Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Springer-Verlag.

Kopetz, H. (2011). What I learned from Brian. In Jones, C. B. et al., editors, Dependable and

Historic Computing, volume 6875 of LNCS. Springer.

Lovins, A. B. and Lovins, L. H. (2001). Brittle Power - Energy Strategy for National Security.
Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Wikipedia (2015). Lufthansa flight 2904. id 646105486, Feb., 7th, 2015.

	You Are Here
	
	Contents & Goals
	Recall: Formal Methods
	

	Formal Specification and Analysis of Requirements: Decision Tables for Example
	Decision Tables
	Decision Tables: Example
	And Where's The Table?
	Decision Tables vs. Rules In General
	By the Way: Decision Tables as Business Rules
	Decision Table Standard Semantics
	Decision Tables: Example
	Isn't There a Bell Ringing...?
	But We Want A Software Specification, Don't We...?
	Decision Table as Requirements Specification: Examples

	Basic Requirements Quality Criteria for DTs
	
	Requirements on Specifications and Formal Methods
	Quality Criteria for DTs: Uselessness and Vacuity
	Uselessness: Example
	Uselessness: Consequences
	Quality Criteria for DTs: Completeness
	Completeness: Example
	Incompleteness: Consequences
	Quality Criteria for DTs: Determinism
	Determinism: Example
	Non-determism: Consequences
	Implementing Decision Tables

	Domain Modelling for DTs
	Domain Modelling
	``Poor Man's Domain Modelling''
	Conflict Axioms for Domain Modelling
	Vacuity, Completeness, Etc. With Conflict Axiom
	Example: Conflict Axioms
	Conflict Axiom: Consequences
	Domain Modelling: Consequences Wiki2015a

	Cross-Checking DTs Against Conflicting Actions
	Decision Tables Vs. Conflicting Conditions and Actions
	Example: Conflicting Actions
	Conflicting Actions: Consequences

	Other Semantics for Decision Tables
	A Collecting Semantics for Decision Tables
	Consistency in The Collecting Semantics
	An Update Semantics for Decision Tables
	An Update Semantics for Decision Tables Cont'd
	Distinguishing Controlled and Uncontrolled Conditions
	Controlled and Uncontrolled Conditions: Example

	Decision Tables: Discussion
	Decision Tables Summary
	Speaking of Formal Methods

	References
	References

