— 02 — 2015-04-27 — main —

Softwaretechnik / Software-Engineering

Lecture 02:
Project Management, Cost Estimation

2015-04-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 02 — 2015-04-27 — Sprelim —

Last Lecture:

o Introduction: Engineering, Quality, Software, Software Specification

This Lecture:

¢ Educational Objectives: Capabilities for following tasks/questions.

e what characterises a project, life cycle, ...7?

e what is a role, a phase, a milestone, ...?

e what are common activities and roles in software development projects?

e what are goals and activities of project management? why project managent?

e what is COCOMO, what is function points? what is it good for?
why to use it with care?

o Content:

e the notion of ‘project’
e project management activities
e what to manage: activities, people, cost and deadlines

e cost estimation, project planning

(Software) Project

project — A temporary activity that is characterized by having a start date, specific
objectives and constraints, established responsibilities, a budget and schedule, and
T~ — ——

a completion date.
If the objective of the project is to develop a software system, then it is sometimes

called a software development or software engineering project. R, H. Thayer (1997)

(software) project — characteristics:

e The duration of a project is limited.

o Each project has an “originator” (person or institution which initiated the project).
The project owner is the originator or its representative. The project leader
reports to the project owner.

e Each project has a purpose, i.e. pursue a bunch of goals. The most important
goal is usually to create or modify software; this software is thus the result of
the project, the product. Other important goals are extension of know-how,
preparation of building blocks for later projects, or utilisation of employees.

The project is called successful if the goals are reached to a high degree.

e The product has a recipient (or will have one).
This recipient is the customer. Later users belong to the customer.

e The project links people, results (intermediate/final products), and resources. The
organisation determines their roles and relations and the external interfaces of the

project. Ludewig & Lichter (2013) 344

— 02 — 2015-04-27 — Sproject —

Software Project: The Very Big Picture

, 2.8
’jM — ﬁ@ %‘\

Customer Developer Developer Customer

software contract software delivery

— 02 — 2015-04-27 — Sproject —

Topics:

— 02 - 2015-04-27 — Sproject —

o (software) project management

e manage: tasks, deadlines, resources

(“what? when? by whom?")

e phases of software projects

Customer Developer o cost estimation, software metrics
announcement
(Lastenheft) o software development processes

1 (and models thereof)
2

Customer Developer
software contract
(incl. Pflichtenheft)

. b

Customer

Developer Customer

milestone N

Developer
software delivery

g
iiii
N B A\

“Developer”: legal person,
may comprise many people

ot

Customer Developer

maintenance

Cycle and Life Cycle

— 02 — 2015-04-27 — Sproject —

cycle — (1) A period of time during which a set of events is completed. See
also: ... IEEE 610.12 (1990)

software life cycle — The period of time that begins when a software product
is conceived and ends when the software is no longer available for use.

The software life cycle typically includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and checkout phase, operation and
maintenance phase, and, sometimes, retirement phase.

Note: These phases may overlap or be performed iteratively. IEEE 610.12 (1990)

software development cycle — The period of time that begins with the de-

cision to develop a software product and ends when the software is delivered.

This cycle typically includes a requirements phase, design phase, implementation phase,
test phase, and sometimes, installation and checkout phase.

Notes: (1) the phases listed above may overlap or be performed iteratively, depending upon
the software development approach used. (2) This term is sometimes used to mean a longer
period of time, either the period that ends when the software is no longer being enhanced

by the developer, or the entire software life cycle. IEEE 610.12 (1990)

system life cycle — The period of time that begins when a system is con-
ceived and ends when it is no longer available for use. |ggg 610.12 (1990)

5/44

Project Management

|
=
®
£
|
~
a9
=
<
Lo
—
o
I3
!
I
=}
|

gject Management B !

T

Goals of Project Management

— 02 - 2015-04-27 — Smgmt —

Activities of Project Management

e Main and general goal: a successful project, i.e. project delivers

e defined results
e in demanded quality
e within scheduled time

e using the assigned resources.

Secondary goals:

Lo
SRy |

Developer Customer
software delivery

e build or strengthen good reputation on market,

e acquire knowledge which is useful for later projects,

e develop re-usable components (to save resources later),

e be attractive to employees.

— 02 — 2015-04-27 — Smgmt —

e Planning — without plans, a project
cannot be managed. Mistakes in
planning can be hard to resolve.

e Assessment and Control — work results
and project progress have to be assessed
and compared to the plans; it has to be
observed whether participants stick to
agreements.

e Recognising and Fighting Difficulties
as Early as Possible — unforeseen
difficulties and problems in projects are
not exceptional but usual. Therefore,
project management needs to constantly
“screen the horizon for icebergs”, and,
when spotting one, react timely and
effectively. In other words: systematic

risk management.

e Communication — distribute
information between project participants
(project owner, customer, developers,
administration).

e Leading and Motivation of Employees
— leading means: going ahead, showing
the way, “pulling” the group. Most
developers want to achieve good results,
yet need orientation and feedback.

e Creation and Preservation of
Beneficial Conditions — provide
necessary infrastructure and working
conditions for developers (against:
demanding customers, imprecisely stated
goals, organisational restructuring,
economy measures, tight office space,
other projects, ...)

10/44

What to (Plan and) Manage?

— 02 — 2015-04-27 — Smgmt —

Managing software projects involves

e tasks and activities,
e people and roles,
e costs and deadlines.

What to (Plan and) Manage (1/3)? Tasks and Activities

— 02 — 2015-04-27 — Smgmt —

1124

12/44

What to (Plan and) Manage (1/3)? Tasks and Activities

— 02 - 2015-04-27 — Smgmt —

— 02 — 2015-04-27 — Smgmt —

Work that commonly needs to be done in order to develop or adapt software:

o Analysis — Software is developed to solve a e Coding and Module Test — The needed modules
problem/satisfy a need. Goal of analysis: are implemented using the chosen programming
understand the problem, assess whether/in language(s). When ready, tested as needed, and
how far software can be used to solve it. ready for integration.

o Specification of Requirements — sort For.mal methods: verify that code implements
out, document, assess, extend, correct design.

.. .results of analysis. Resulting documents o Integration, Test, Approval — System is con-
are basis of most other activities! structed from completed components, interplay

Formal methods: check consistency, realis- is tested. Customer checks system and declares
ability. approval (or not).

e Deployment, Operation, and Maintenance —
System is installed up to customer needs and be-
comes operational. Occurring errors are fixed.
New requirements (changes, extensions): new
project (so-called maintenance project).

e Design, Specification of Modules — Most
software systems are not monolithic but
consist modules or components which in-
teract to realise the overall functionality.

Overall structure is called software archi-

tecture (= Iater)._ Design archite(.:ture, o Dismissing and Replacement — Most software
specify component interfaces as precise as systems (sooner or later) become obsolete, and
possible to enable concurrent development are often replaced by a successor system. Com-
and seamless integration. mon reasons: existing system no longer main-
Formal methods: verify that design meets tainable, not adaptable to new or changed re-
requirements. quirements.

13/44

What to (Plan and) Manage (2/3)? People and (other) Resources

14/44

(Plan and) Manage (2/3) — People and (other) Resources

— 02 — 2015-04-27 — Smgmt —

Recall: roles “Customer” and “Developer” are
assumed by legal persons, which often repre-

= sent many people.
The same legal person may act as “Customer”
and “Developer” in the same project.

Customer Developer

2 2 Useful and common roles
{) ‘g(¥¥§K in software projects:

. e customer, user
Clients Software people '
e project manager

o (sytems) analyst
o software architect, designer

o (lead) developer
programmer, tester, ...

e maintenance engineer
e systems administrator

V e invisible clients: legislator,
o horm/standard supervisory committee

Excursion: The Concept of Roles

— 02 — 2015-04-27 — Smgmt —

In a software project, at each w:
e there is a set P of people, e.g. P = {‘,i,a,x,m}
e there is a set R of (active) roles, e.g. R = {| mgr], [prg), [tst].[ana |}

e there is a (many-to-many) relation between elements of P and R

assumes C P X R

each person has a role (|1 assumes = P), each role a person (|2 assumes = R).

a 3 ® =
mgr [pg) [t
\ E

one person, one role multiple persons, one role one person, multiple roles

assumes = { (&, [mer), (&, (o), (A, (o), (& (o)), (A, [xst), (A, [zna) }

. . . . assumes
e Possible visualisation: P R
1..% 1..%

e Example:

16/44

15/44

Excursion: The Concept of Roles Cont’d

— 02 - 2015-04-27 — Smgmt —

‘ ' - = e

Roles typically come with responsibilities and rights.

For example,

° : a test engineer

e is responsible for quality control

e has the right to raise issue reports

e [mer]: a project manager
e has the right to raise issue reports

e is responsible for closing issue reports

o [prgJ a programmer
o is responsible for reporting unforeseen problems to the project manager
o is responsible for respecting coding conventions

o is responsible for addressing issue reports

1744

(Plan and) Manage (2/3) — People and (other) Resources

— 02 — 2015-04-27 — Smgmt —

Some truisms and commonplaces to keep in mind:

e “Software engineering [...] takes place in the heads of humans, who like to get software or
develop it. Humans are central [in Software Engineering]; for us, that's not an empty
phrase (‘Floskel’), but a factual statement.” (Ludewig and Lichter, 2013)

e Being discontent with the team situation, doesn't make people better developers.
(Other way round, in most cases.)

e Recognising and resolving tensions in your team (or at least trying to) is an activity
towards project success, thus a responsibility of each and every team member.

“Everybody is responsible, the project manager is a little bit more responsible.”
e “If somebody stronly insists on a claim which feels obviously wrong to you, he/she may
be true given her/his respective (implicit) terms and assumptions.” (source?)

Try to understand and explicate these terms and assumptions.

e “Never attribute to malice that which can be adequately explained by stupidity.”
(Hanlon's Razor)

18/44

— 02 - 2015-04-27 — Smgmt —

What to (Plan and) Manage (3/3)? Deadlines and Costs

What to (Plan and) Manage (3/3)? — Deadlines and Costs

— 02 — 2015-04-27 — Smgmt —

s

N oL
° 4 “' ® - ® Q"; @ 2’ @
I\ . I\ I\
R 1 NN 7 S L G I |
Customer Developer Customer Developer Developer Customer Developer Customer Customer Developer

announcement software contract
(Lastenheft) (incl. Plichtenheft)

milestone N software delivery maintenance

A phase is a continuous, i.e. not interrupted range of time in which certain works

are carried out and completed. At the end of the phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satis-

fied. Ludewig & Lichter (2013)

e Phases (in this sense) do not overlap! There may be different “threads of development”
running in parallel, structured by different milestones.

e Splitting a project into phases makes controlling easier; milestones may involve the
customer (accept intermediate results) and trigger payments.

The granularity of the phase structuring is critical:

e very short phases may not be tolerated by a customer,

o very long phases may mask significant delays longer than necessary.

If necessary:
define internal (customer not involved) and external (customer involved) milestones.

19/44

20/44

Deadlines Cont’d

— 02 - 2015-04-27 — Smgmt —

— 02 — 2015-04-27 — Smgmt —

o Whether a milestone is reached must be assessable by
e clear,
e objective, and

e unambiguous

criteria.

e The definition of a milestone often comprises:

o a definition of the results which need to be achieved,
o the required quality properties of these results,
o the desired time for reaching the milestone, and

e the instance (person or committee) which decides whether the milestone is reached.

o Milestones can be part of the development contract;
not reaching a defined milestone as planned can lead to

Costs

“Next to ‘Software’, ‘Costs’ is one of the terms occurring most often in this
book.” Ludewig and Lichter (2013)

A first approximation:

e cost (‘Kosten') — all disadvantages of a solution, quantifiable in terms of money or not.

o benefit (‘Nutzen') (or: negative costs) — all benefits of a solution.

Note: costs and benefits can be very subjective — and are not necessarily
quantifiable...

Super-ordinate goal of many projects:

e Minimize overall costs, i.e. maximise difference between benefits and costs.

(Equivalent: minimize sum of positive and negative costs.)

21/44

22/44

Costs vs. Benefits: A Closer Look

— 02 — 2015-04-27 — Smgmt —

The benefit of a software is determined by the advantages achievable using the
software; it is influenced by:

e the degree of coincidence between product and requirements,

o additional services, comfort, flexibility etc.

Some examples of cost/benefit pairs: Jones (1990)

Labor during
development

Use of existing labor

Conversion from
old system to new

Improvement of
system

Labor during

Reduced operational

Increased data

Increased control

operation labor gathering

New equipment? Replacement of Employee Employee

(purchase, equipment discontent satisfaction

maintenance, maintenance? (sale, .

depreciation) maintenance) Training for Increased
employees productivity

New software
purchases

(Other) use of new
software

Costs: Economics in a Nutshell

Lost opportunities

Better market
stance, basis for

furth th
urther grow 9314

— 02 — 2015-04-27 — Smgmt —

Distinguish current cost (‘laufende Kosten'), e.g.

wages

management, marketing

rooms

computers, networks, software as part of infrastructure

and project-related cost (‘projektbezogene Kosten'), e.g.

e additional temporary personnel

contract costs

expenses

hardware and software as part of product or system

24 /44

Software Costs in a Narrower Sense

software costs

N

maintenance

net production quality costs (without quality)

error prevention analyse-and-fix

costs costs
Y

quality assurance

error costs decreased benefit

error localisation error removal error caused costs
costs costs (in operation)
Y P T P S

during and after development

Ludewig and Lichter (2013)
25/44

— 02 — 2015-04-27 — Smgmt —

Discovering Errors Late Can Be Expensive

relative cost of an error
200 T
100 +
50 | larger projects
20 T
10 + smaller projects
5 4
2 4 phase of error
detection
1 1 1 1
Analysis Design Coding Test & Acceptance
Integration & Operation

Relative error costs over latency according to investigations at IBM, etc. by (Boehm, 1979).

Visualisation: Ludewig and Lichter (2013)

— 02 — 2015-04-27 — Smgmt —

26,44

Software Project Management Bottom-Line

“Management, management... Can’t we just sit down and write some software?”

e Quantity as Quality (Ludewig and Lichter, 2013) — the large is in general not
just a multiple of the small; solutions for small problems don’t scale in general.

Example: reliability. Consider a software system with N modules, each module
being correct with probability p.

N modules are correct with probability p~. Example N = 100:

p |09 | 0.95 | 0.99 | 0.999
™ | 0.0000267 | 0.006 | 0.37 | 0.90

Software Engineering as defensive discipline

Eﬂ Analogy: hygiene in hospital.

! “Dear patient, we're working hard to protect you from an infection.”

3 — “Well, doctor, | thought you were working to get me well again.”

g “Software Engineering is boring and frustrating for people who don't value the

g defense of failures as a positive achievement.” (Ludewig and Lichter, 2013)

I 27 /44
Project Planning and Cost Estimation

g

q

T

28/44

ichtenheft’

— 02 — 2015-04-27 — Splan —

N N R SN

Customer Developer Developer Customer Developer Customer Customer Developer

nnou nt software contract " - " .
(Lastenheft) {inct. Plichrenheft) milestone N software delivery maintenance

software life cycle — The period of time that begins when a software product
is conceived and ends when the software is no longer available for use.

The software life cycle typically includes a concept phase, [...]. IEEE 610.12 (1990)

Lastenheft (Requirements Specification) Vom Auftraggeber festgelegte
Gesamtheit der Forderungen an die Lieferungen und Leistungen eines Auf-
tragnehmers innerhalb eines Auftrages.

(Entire demands on deliverables and services of a developer within a contracted development,

created by the customer.) DIN 69901-5 (2009)

Pflichtenheft (Feature Specification) Vom Auftragnehmer erarbeiteten
Realisierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber
vorgegebenen Lastenhefts.

(Specification of how to realise a given requirements specification, created by the developer.)

DIN 69901-5 (2009)

e One way of getting there: a pre-project.

The “Estimation Funnel”

— 02 — 2015-04-27 — Splan —

effort estimated to real
Al effort (log. scale)
2%~
t
1x
0.5x+
0.25x+
Pre—ProjectA Analysis A Design A Coding & Test A

Uncertainty with estimations (following (Boehm et al., 2000), p. 10).

29/44

Visualisation: Ludewig and Lichter (2013)

30/44

Expert’s Estimation

— 02 — 2015-04-27 — Splan —

One approach: the Delphi method.

Step 1:

write down your
estimates!

i s2o=woy

Step 2: show your

estimates and
explain!

ﬂ/
LT

Then take the median, for example.

o
o
=
@
HQ
=
@
N
N

Step 3:

3144

Algorithmic Estimation: COCOMO

— 02 — 2015-04-27 — Splan —

Constructive Cost Model:
Formulae which fit a huge set of archived project data (from the late 70's).

Flavours:

e COCOMO 81 (Boehm, 1981): basic, intermediate, detailed
e COCOMO II (Boehm et al., 2000)

All based on estimated program size S measured in DSI or kDSI (thousands of
Delivered Source Instructions).

Factors like security requirements or experience of the project team are mapped to
values for parameters of the formulae.

COCOMO examples:
o textbooks like Ludewig and Lichter (2013) (most probably made up)

e an exceptionally large example:
COCOMO 81 for the Linux kernel (\Wheeler, 2006) (and follow-ups)

32/44

COCOMO 81

— 02 — 2015-04-27 — Splan

27 — Splan

— 02 — 2015-04

Software Characteristics of the Type
. - a b c d
Project Type . . Deadlines/ Dev.
Size Innovation . .
Constraints | Environment
. Small . .
Organic (<50 KLOC) Little Not tight Stable 24110525 0.38
. Medium . . .
Semi-detached (<300 KLOC) Medium Medium Medium 30| 112 25| 0.35
Embedded Large Greater Tight Complex HW/ 36120 |25 0.32
Interfaces

Basic COCOMO:

E (effort required) = a(S/kDSI)"
TDEV (time to develop) = cE?

Intermediate COCOMO:

[person-months]

[months]

E (effort required) :/Ma(S/kDSI)b [person-months]

. where

M = RELY - CPLX -

TIME - ACAP - PCAP - LEXP - TOOL - SCED

33/44

RELY required software 0.75 0.88 1 1.15 1.40

reliability

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65
TIME execution time 1 1.11 1.30 1.66
constraint

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language 1.14 1.07 1 0.95

experience

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development 1.23 1.08 1 1.04 1.10

schedule

34/44

— 02 - 2015-04-27 — main —

References

43/44

References

— 02 — 2015-04-27 — main —

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design
specifications. In EURO IFIP 79, pages 711-719. Elsevier North-Holland.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W.,
Chulani, S., and Abts, C. (2000). Software Cost Estimation with COCOMO |II. Prentice-Hall.

Buschermdhle, R., Eekhoff, H., and Josko, B. (2006). success — Erfolgs- und Misserfolgsfaktoren
bei der Durchfiihrung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical
Report VSEK/55/D.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.
IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.
Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Kndll, H.-D. and Busse, J. (1991). Aufwandsschatzung von Software-Projekten in der Praxis:
Methoden, Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. Bl
Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.
Metzger, P. W. (1981). Managing a Programming Project. Prentice-Hall, 2 edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschatzung von DV-Projekten, Darstellung und
Praxisvergleich der wichtigsten Verfahren. Springer-Verlag.

Thayer, R. H. (1997). Tutorial — Software Engineering Project Management. |IEEE Society 44)4

Press reviced edition

