
–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 14: Architecture and Design Patterns

2015-07-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents of the Block “Design”
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
co

n
te
n
ts

–

2/51

(i) Introduction and Vocabulary

(ii) Principles of Design

a) modularity

b) separation of concerns

c) information hiding and data encapsulation

d) abstract data types, object orientation

(iii) Software Modelling

a) views and viewpoints, the 4+1 view

b) model-driven/based software engineering

c) Unified Modelling Language (UML)

d) modelling structure

1. (simplified) class diagrams

2. (simplified) object diagrams

3. (simplified) object constraint logic (OCL)

e) modelling behaviour

1. communicating finite automata

2. Uppaal query language

3. basic state-machines

4. an outlook on hierarchical state-machines

(iv) Design Patterns

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo
T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo
L 14: 2.7., Do

Architecture &
Design, Software

Modelling
T 5: 6.7., Mo
L 15: 9.7., Do

Quality Assurance
L 16: 13.7., Mo

Invited Talks L 17: 16.7., Do
T 6: 20.7., Mo

Wrap-Up L 18: 23.7., Do

westphal
Bleistift

Contents & Goals
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
p
re
li
m

–

3/51

Last Lecture:

• Networks of CFA, Tool Demo (recording will be reconstructed), Implementable CFA

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is the relation between greedy and standard semantics?

• What is an Uppaal Query for, e.g., “location ℓ is reachable”?

• What’s the difference between CFA and UML State-Machines?

• Can each network of UML State-Machines be encoded in CFA?

• Explain an example of an architecture (design) pattern.

• What is “software entropy”?

• Content:

• Implementable CFA Cont’d

• Uppaal Query Language

• UML State-Machines

• Architecture and Design Patterns (with examples)

Implementing CFA Cont’d

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

4/51

Recall: Implementable CFA
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
im

p
lc
o
n
t
–

5/51

• Let each automaton in the network C(A1, . . . ,An) be marked as
either environment or controller.

We call C implementable if and only if, for each controller A in C,

(i) A is deterministic,

(ii) A reads/writes only its local variables,
may also read variables written by environment automata,
but only in modification vectors of edges with input synchronisation,

(iii) A is locally deadlock-free, i.e. enabled edges with output-actions are not blocked forever.

• The communicating finite automaton A = (L,B, V,E, ℓini)
is called deterministic if and only if

• for each location ℓ,

• either all edges with ℓ as source location have pairwise different input actions,

• or there is no edge with an input action starting at ℓ,
and all edges starting at ℓ have pairwise (logically) disjoint guards.

• Note: implementable (i) and (ii) can be checked syntactically.

Property (iii) is a property of the whole network.

Can be checked with Uppaal:
(A.ℓ ∧ ϕ) −→ (A.ℓ

′)

for each edge (ℓ, α, ϕ, ~r, ℓ′) of A.

Recall: Greedy CFA Semantics
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
im

p
lc
o
n
t
–

6/51

• Greedy semantics:

• each input synchronisation transition (plus: system start) of automaton A is followed
by a maximal sequence of internal transitions or output transitions of A.

• Maximal: cannot be extended by an internal transition.

There may still be interleaving of the internal transitions, but (by forbidding shared
variables for controllers) cannot be observed outside of an automaton.

Example:

G?F!

n := n + 1

E?

v := v_env

E!

v_env > -10
v_env := v_env - 1

v_env < 10
v_env := v_env + 1

G!F? F!G!

A1:

A2,1:
A2,2:

E:

• A1 is implementable in C(A1,A2,1, E) (environment: only E)

• deterministic: ✔,

• only local variables, environment variables with input: ✔,

• locally deadlock-free: ✔.

• A1 is not implementable in C(A1,A2,2, E).

Recall: Implementing CFA
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
im

p
lc
o
n
t
–

7/51

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

st : { idle, wsel, ssel, tsel, reqs, half };

take event(E : { TAU, WATER, SOFT, TEA, ... }) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send DWATER(); st := reqs;

;;

} }

Model vs. Implementation
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
im

p
lc
o
n
t
–

8/51

• Now an implementable model C(A1, . . . ,An) has two semantics:

• JCKstd — standard semantics.

• JCKgrd — greedy semantics.

• Are they related in any way? They are: JCKstd ⊇ JCKgrd . (∗)

Exercise: prove (∗).

• What effect does this insight have on Uppaal verification results?

• If there is an error in JCKstd , will it be in a correct implementation (of JCKgrd)?

Not necessarily.

• If there is no error in JCKstd , will a correct implementation (of JCKgrd) be error-free?

Yes, definitely.
Uppaal verification

shows no error reports error

im
p
l.
h
a
s
e
rr
o
r

yes

false negative true positive

no

true negative false positive

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Uppaal Query Language

(Larsen et al., 1997; Behrmann et al., 2004)

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

9/51

The Uppaal Query Language
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

10/51

Consider N = C(A1, . . . ,An) over data variables V .

• basic formula:
atom ::= Ai.ℓ | ϕ | deadlock

where ℓ ∈ Li is a location and ϕ an expression over V .

• configuration formulae:

term ::= atom | not term | term1 and term2

• existential path formulae: (“exists finally”, “exists globally”)

e-formula ::= ∃♦ term | ∃� term

• universal path formulae: (“always finally”, “always globally”, “leads to”)

a-formula ::= ∀♦ term | ∀� term | term1 --> term2

• formulae (or queries):

F ::= e-formula | a-formula

westphal
Bleistift

Satisfaction of Uppaal Queries by Configurations
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

11/51

• The satisfaction relation
〈~ℓ, ν〉 |= F

between configurations
〈~ℓ, ν〉 = 〈(ℓ1, . . . , ℓn), ν〉

of a network C(A1, . . . ,An) and formulae F of the Uppaal logic
is defined inductively as follows:

• 〈~ℓ, ν〉 |= deadlock iff ℓ0,i is a dedlock configuration

• 〈~ℓ, ν〉 |= Ai.ℓ iff ℓ0,i = ℓ

• 〈~ℓ, ν〉 |= ϕ iff ν |= ϕ

• 〈~ℓ, ν〉 |= not term iff 〈~ℓ, ν〉 6|= term

• 〈~ℓ, ν〉 |= term1 and term2 iff 〈~ℓ, ν〉 |= termi, i = 1, 2

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Satisfaction of Uppaal Queries by Configurations
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

12/51

Exists finally:

• 〈~ℓ0, ν0〉 |= ∃♦ term iff ∃ path ξ of C starting in 〈~ℓ0, ν0〉
∃ i ∈ N0 • ξi |= term

“some configuration satisfying term is reachable”

Example: ∃♦ϕ

...
...

...
...

〈~ℓ0, ν0〉
¬ϕ

¬ϕ ¬ϕ

¬ϕ ¬ϕ

¬ϕ ¬ϕ

λ1 λ2

λ1,1

λ2,1 λ2,2

λ2,2,1 λ2,2,2

〈~ℓ, ν〉
ϕ

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Satisfaction of Uppaal Queries by Configurations
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

13/51

Exists globally:

• 〈~ℓ0, ν0〉 |= ∃� term iff ∃ path ξ of C starting in 〈~ℓ0, ν0〉
∀ i ∈ N0 • ξi |= term

“all configurations of some computation path satisfy term”

Example: ∃�ϕ

...
...

...
...

...

〈~ℓ0, ν0〉
ϕ

¬ϕ ϕ

¬ϕ ¬ϕ

ϕ ¬ϕ

λ1 λ2

λ1,1

λ2,1 λ2,2

λ2,2,1 λ2,2,2

〈~ℓ, ν〉
ϕ

westphal
Bleistift

westphal
Bleistift

Satisfaction of Uppaal Queries by Configurations
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

14/51

• Always globally:

• 〈~ℓ0, ν0〉 |= ∀� term iff 〈~ℓ0, ν0〉 6|= ∃♦¬term

• Always finally:

• 〈~ℓ0, ν0〉 |= ∀♦ term iff 〈~ℓ0, ν0〉 6|= ∃�¬term

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Satisfaction of Uppaal Queries by Configurations
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

15/51

Leads to:

• 〈~ℓ0, ν0〉 |= term1 −→ term2 iff ∀ path ξ of N starting in 〈~ℓ0, ν0〉
∀ i ∈ N0 •
ξi |= term1 =⇒ ξi |= ∀♦ term2

“on all paths, from each configuration satisfying term1, a configuration satifying
term2 is reachable” (response pattern)

Example: ϕ1 −→ ϕ2

...

...
...

...

〈~ℓ0, ν0〉
ϕ1,¬ϕ2

¬ϕ2

ϕ1,¬ϕ2¬ϕ2 ϕ2

ϕ2 ϕ2 ϕ2

λ1 λ2

λ1,1

λ1,1,1

λ2,1 λ2,2

λ2,2,1 λ2,2,2

¬ϕ2

CFA Model-Checking
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
p
p
a
a
l
–

16/51

• Network satisfies query:

• C |= F if and only if Cini |= F .

Definition. The model-checking problem for a network C of commu-
nicating finite automata and a query F is to decide whether

(C, F) ∈ |=.

Proposition. The model-checking problem for communicating finite au-
tomata is decidable.

UML State Machines

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

17/51

UML Core State Machines
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

18/51

C

D
x : Int = 27

itsD

0..1
itsC

0..1

〈〈signal〉〉

E

〈〈signal〉〉

F

〈〈signal〉〉

G

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

annot ::=
[
〈event〉[. 〈event〉]∗
︸ ︷︷ ︸

trigger

[[〈guard〉]] [/ 〈action〉]
]

with

• event ∈ E , (optional)

• guard ∈ Expr
S

(default: true, assumed to be in Expr
S
)

• action ∈ ActS (default: skip, assumed to be in ActS)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Event Pool and Run-To-Completion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

19/51

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool

0 s1 1 27 s1 1 E ready for u1

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Event Pool and Run-To-Completion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

19/51

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool

0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

westphal
Bleistift

Event Pool and Run-To-Completion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

19/51

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool

0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0

3 s2 1 27 s3 0 G ready for u1

westphal
Bleistift

Event Pool and Run-To-Completion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

19/51

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool

0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0

3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0

Event Pool and Run-To-Completion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

19/51

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool

0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0

3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0

5.b s1 1 0 s1 1

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Composite (or Hierarchical) States
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

20/51

• OR-states, AND-states Harel (1987).

• Composite states are about abbreviation, structuring, and avoiding redundancy.

•

n

•
w e

s

resigned

X/

n

•
w e

s

resigned

X/
X/

X/

X/

•

n

•
w e

s

•
slow

fast

F/F/

n

fastN

•

wfastW e

fastE

s

fastS

F/

F/

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

21/51

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser
->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

Would be Too Easy. . .
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

22/51

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

→ “Software Design, Modelling, and Analysis with UML” in the winter semester.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Rhapsody Architecture
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

23/51

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

UML Modes

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

24/51

UML and the Pragmatic Attribute
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
lm

o
d
e
–

25/51

Recall: definition “model” (Glinz, 2008, 425):

[...] (iii) the pragmatic attribute, i.e. the model is built in a
specific context for a specific purpose.

Examples for context/purpose:

Floorplan as sketch: Floorplan as blueprint: Floorplan as program:

+ wiringplan

+ windows

+ ...

With UML it’s the Same [http://martinfowler.com/bliki]
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
lm

o
d
e
–

26/51

The last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmlMode to you.”

Claim:

• This not only applies to UML as a language (what should be in it etc.?),

• but at least as well to each individual UML model.

With UML it’s the Same [http://martinfowler.com/bliki]
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
lm

o
d
e
–

26/51

The last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmlMode to you.”

Claim:

• This not only applies to UML as a language (what should be in it etc.?),

• but at least as well to each individual UML model.

Sketch

In this UmlMode
developers use the UML to
help communicate some
aspects of a system. [...]

Sketches are also useful in
documents, in which case
the focus is
communication ra- ther
than completeness. [...]

The tools used for
sketching are lightweight
drawing tools and often
people aren’t too particular
about keeping to every
strict rule of the UML.
Most UML diagrams
shown in books, such as
mine, are sketches.
Their emphasis is on
selective communication
rather than complete
specification.
Hence my sound-bite “com-
prehensiveness is the enemy
of comprehensibility”

Blueprint

[...] In forward engineering
the idea is that blueprints
are developed by a
designer whose job is to
build a detailed design for
a programmer to code up.
That design should be
sufficiently complete that
all design decisions are laid
out and the programming
should follow as a pretty
straightforward activity
that requires little thought.
[...]

Blueprints require much
more sophisticated tools
than sketches in order to
handle the details required
for the task. [...]

Forward engineering tools
support diagram drawing
and back it up with a repos-
itory to hold the informa-
tion. [...]

ProgrammingLanguage

If you can detail the UML
enough, and provide
semantics for everything
you need in software, you
can make the UML be your
programming language.

Tools can take the UML
diagrams you draw and
compile them into
executable code.

The promise of this is that
UML is a higher level
language and thus more
productive than current
programming languages.

The question, of course, is
whether this promise is
true.
I don’t believe that graph-
ical programming will
succeed just because it’s
graphical. [...]

UML-Mode of the Lecture: As Blueprint
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
lm

o
d
e
–

27/51

• The “mode” fitting the lecture best is AsBlueprint.

Goal:

• be precise to avoid misunderstandings.

• allow formal analysis of consistency/implication
on the design level — find errors early.

Yet we tried to be consistent with the (informal semantics) from the standard

documents OMG (2007a,b) as far as possible.

Plus:

• Being precise also helps to work in mode AsSketch:

Knowing “the real thing” should make it easier to

(i) “see” which blueprint(s) the sketch is supposed to denote, and

(ii) to ask meaningful questions to resolve ambiguities.

Architecture Patterns

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

28/51

Introduction
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

29/51

• Over decades of software engineering, many clever, proved and tested designs of solutions
for particular problems emerged.

• Question: can we generalise, document and re-use these designs?

• Goal: “don’t re-invent the wheel” / benefit from “clever”, “proven and tested”, “solution”.

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems. It provides a set of prede-
fined subsystems, specifies their responsibilities, and includes rules and guide-
lines for organizing the relationships between them. Buschmann et al. (1996)

• Using an architectural pattern

• implies certain characteristics or properties of the software (construction, extendibility,
communication, dependencies, etc.),

• determines structures on a high level of the architecture, thus is typically a central and
fundamental design decision.

• The information that (where, how, . . .) a well-known architecture / design pattern is
used in a given software can make comprehension and maintenance significantly easier.

Example: Layered Architectures
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

30/51

• (Züllighoven, 2005):

• A layer whose components only interact with components of their direct neighbour
layers is called protocol-based layer. A protocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

• Example: The ISO/OSI reference model.

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

data

packets

frames

bits

Example: Layered Architectures Cont’d
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

31/51

• object-oriented layer: interacts with layers directly and possibly further above and below.

• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath,

• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Example: Layered Architectures Cont’d
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

31/51

• object-oriented layer: interacts with layers directly and possibly further above and below.

• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath,

• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Example: Three-Tier Architecture
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

32/51

Desktop Host

presentation tier

Application Server

(business) logic tier

data tier

Database Server

DBMS

(Ludewig and Lichter, 2013)

• presentation layer:

user interface; presents information obtained

from the logic layer to the user, controls inter-

action with the user, i.e. requests actions at the

logic layer according to user inputs,

• logic layer:

core system functionality; layer is designed with-

out information about the presentation layer,

may only read/write data according to data layer

interface

• data layer:

persistent data storage; hides information about

how data is organised, read, and written, offers

particular chunks of information in a form useful

for the logic layer.

• Examples: Web-shop, business software (enterprise resource planning), etc.

Layered Architectures: Discussion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

33/51

• Advantages:

• protocol-based: only neighouring layers are coupled, i.e. components of these layers
interact,

• coupling is low, data usually encapsulated,

• changes have local effect (only neighbouring layers affected),

• protocol-based: distributed implementation often easy.

• Disadvantages:

• performance (as usual), nowadays often not a problem.

Example: Pipe-Filter
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

34/51

Example: Compiler

lexical analysis
(lexer)

syntactical
analysis (parser)

semantical
analysis

code
generation

ASCII Tokens AST dAST

Sourcecode

Objectcode

Errormessages

Example: UNIX Pipes

ls -l | grep Sarch.tex | awk ’{ print $5 }’

• Disadvantages:

• if the filters use a common data exchange format, all filters may need changes if the
format is changed, or need to employ (costly) conversions.

• filters do not use global data, in particular not to handle error conditions.

Example: Model-View-Controller
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

35/51

controller view

model

seesuses

change of
visualisation

manipulation
of data

notification of
updates

access to
data

h
tt
p
s:
/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg
/
w
ik
i/
F
ile
:M

as
ch
in
en
le
it
st
an
d
K
W
Z
.j
p
g
D
er
g
en
au
e,

C
C
-B

Y
-S
A
-2
.5

https://commons.wikimedia.org/wiki/File:Maschinenleitstand_KWZ.jpg
westphal
Bleistift

Example: Model-View-Controller
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
ar
ch

–

35/51

controller view

model

seesuses

change of
visualisation

manipulation
of data

notification of
updates

access to
data

h
tt
p
s:
/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg
/
w
ik
i/
F
ile
:M

as
ch
in
en
le
it
st
an
d
K
W
Z
.j
p
g
D
er
g
en
au
e,

C
C
-B

Y
-S
A
-2
.5

• Advantages:

• one model can serve multiple view/controller pairs;

• view/controller pairs can be
added and removed at runtime;

• model visualisation always
up-to-date in all views;

• distributed implementation (more or less) easily.

• Disadvantages:

• if the view needs a lot of data, updating the view can be inefficient.

https://commons.wikimedia.org/wiki/File:Maschinenleitstand_KWZ.jpg

Design Patterns

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

36/51

Design Patterns
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

37/51

• In a sense the same as architectural patterns, but on a lower scale.

• Often traced back to (Alexander et al., 1977; Alexander, 1979).

Design patterns ... are descriptions of communicating objects and classes that are cus-

tomized to solve a general design problem in a particular context. A design pattern names,

abstracts, and identifies the key aspects of a common design structure that make it useful

for creating a reusable object-oriented design. (Gamma et al., 1995)

Example: Strategy
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

38/51

Strategy

Problem The only difference between similar classes is that they solve the
same problem by different algorithms.

Solution

• Have one class StrategyContext with all common operations.

• Another class Strategy provides signatures for all operations to be
implemented differently.

• From Strategy derive one sub-class ConcreteStrategy for each
implementation alternative.

• StrategyContext uses concrete Strategy-objects to execute the
different implementations via delegation.

Structure

StrategyContext

+ contextInterface()

Strategy

+ algorithm()

ConcreteStrategy1

+ algorithm()

ConcreteStrategy2

+ algorithm()

Example: Pattern Usage and Documentation
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

39/51

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext

Observer: Observer

Mediator: Colleague

State: StateContext

Mediator: Colleague

State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject

Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

Example: Singleton and Memento
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

40/51

Singleton

Problem Of one class, exactly one instance should exist in the system.

Example Print spooler.

Memento

Problem The state of an object needs to be archived in a way that allows
to re-construct this state without violating the principle of data
encapsulation.

Example Undo mechanism.

Example: Mediator, Observer, and State
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

41/51

Mediator

Problem Objects interacting in a complex way should only be loosely coupled
and be easily exchangeable.

Example Appearance and state of different means of interaction (menus,
buttons, input fields) in a graphical user interface (GUI) should be
consistent in each interaction state.

Observer

Problem Multiple objects need to adjust their state if one particular other
object is changed.

Example All GUI object displaying a file system need to change if files are
added or removed.

State

Problem The behaviour of an object depends on its (internal) state.
Example The effect of pressing the room ventilation button depends (among

others?) on whether the ventilation is on or off.

Meta Design Pattern: Inversion of Control
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

42/51

• “don’t call us, we’ll call you”

• Classical (small) embedded controller software:

• while (true) {
// read inputs

// compute updates

// write outputs

}

• User interfaces, for example:

• define button callback();

• register method with UI-framework (→ later),

• whenever button is pressed (handled by UI-framework),
button callback() is called and does its magic.

• Also found in MVC and observer patterns:
model notifies view, subject notifies observer.

Design Patterns: Discussion
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

43/51

• “The development of design patterns is considered to be one of the most important
innovations of software engineering in recent years.” (Ludewig and Lichter, 2013)

• Advantages:

• (Re-)use the experience of others and employ well-proven solutions.

• Can improve on quality criteria like changeability or re-use.

• Provide a vocabulary for the design process, thus facilitates documentation of
architectures and discussions about architecture.

• Can be combined in a flexible way, one class in a particular architecture can correspond
to roles of multiple patterns.

• Helps teaching software design.

• Disadvantages:

• Using a pattern is not a value as such — using too much global data cannot be
justified by “but it’s the pattern Singleton”.

• Again: reading is easy, writing need not be.

Here: Understanding abstract descriptions of design patterns or their use in existing
software may be easy — using design patterns appropriately in new designs requires
(surprise, surprise) experience.

westphal
Bleistift

Libraries and Frameworks
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

44/51

• (Class) Library: a collection of operations or classes offering generally usable functionality
in a re-usable way.

Examples:

• libc — standard C library (is in particular abstraction layer for operating system functions),

• GMP — GNU multi-precision library, cf. Lecture 6.

• libz — compress data.

• libxml — read (and validate) XML file, provide DOM tree.

• Framework: an architecture consists of class hierarchies which determine a generic
solution for similar problems in a particular context.

• Example: Android Application Framework

Libraries and Frameworks
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

44/51

• (Class) Library: a collection of operations or classes offering generally usable functionality
in a re-usable way.

Examples:

• libc — standard C library (is in particular abstraction layer for operating system functions),

• GMP — GNU multi-precision library, cf. Lecture 6.

• libz — compress data.

• libxml — read (and validate) XML file, provide DOM tree.

• Framework: an architecture consists of class hierarchies which determine a generic
solution for similar problems in a particular context.

• Example: Android Application Framework

h
tt
p
:/
/
d
ev
el
o
p
er
.a
n
d
ro
id
.c
o
m
/
tr
ai
n
in
g
/
b
as
ic
s/
ac
ti
vi
ty
-l
if
ec
yc
le
/
st
ar
ti
n
g
.h
tm

l

http://developer.android.com/training/basics/activity-lifecycle/starting.html

Libraries and Frameworks
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

44/51

• (Class) Library: a collection of operations or classes offering generally usable functionality
in a re-usable way.

Examples:

• libc — standard C library (is in particular abstraction layer for operating system functions),

• GMP — GNU multi-precision library, cf. Lecture 6.

• libz — compress data.

• libxml — read (and validate) XML file, provide DOM tree.

• Framework: an architecture consists of class hierarchies which determine a generic
solution for similar problems in a particular context.

• Example: Android Application Framework

• The difference lies in flow-of-control:
library modules are called from user code, frameworks call user code.

• Product line: parameterised design/code
(“all turn indicators are equal, turn indicators in premium cars are more equal”).

• For some application domains, there are reference architectures (games, compilers).

Reference Architecture Example: Games
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
p
a
t
–

45/51

Tron

Joystick?

. . .

Keyboard?

Control

Player
colour
score
direction
speed

Gameplay Render

OpenGL?

. . .

aalib?

AI?

Segment
x0, y0
x1, y1
colour

Engine
areawidth
areaheight

1..∗

notifyupdate

0..∗

head

world

1..∗

Main

External
inputs

• Keyboard

• Joystick

• . . .

Game Logic

• player scores
• interface inputs/engine

(Physics) Engine

• physical objects
• collision notification

Output

• Graphics (from
ASCII to bitmap;
native or via API)

• Sound

• . . .

notifyupdate ?

?

Quality Criteria on Architectures
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
q
–

46/51

• testability

• architecture design should keep testing (or formal verification) in mind (buzzword “design for
verification”),

• high locality of design units may make testing significantly easier (module testing),

• particular testing interfaces may improve testability (e.g. allow injection of user input not only
via GUI, or provide particular log output for tests).

• changeability, maintainability

• most systems that are used need to be changed or maintained, in particular when requirements
change,

• risk assessment: parts of the system with high probability for changes should be designed such
that changes are possible with acceptable effort (abstract, modularise, encapsulate),

• portability

• systems with a long lifetime may need to be adapted to different platforms over time,
infrastructure like databases may change,

• porting: adaptation to different platform (OS, hardware, infrastructure).

• Note: a good design (model) is first of all supposed to support the solution,
it need not be a good domain model.

Software Entropy
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
q
–

47/51

• Lehman’s Laws of Software Evolution (Lehman and Belady, 1985):

(i) A program that is used will be modified.

(ii) When a program is modified, its complexity will increase,
provided that one does not actively work against this.

• Software entropy E (measure of disorder) Jacobson et al. (1992)

claim: ∆E ∼ E

• “when designing a system with the intention of it being maintainable, we try to give it
the lowest software entropy possible from the beginning.”

• Work against disorder: re-factoring

(re-assign data and operations to modules, introduce new layers generalising old and
new solutions, (automatically) check that intended interfaces are not bypassed, etc.)

• Proposal (Jacobson et al., 1992):

• use “probability for change” as
guideline in (architecture) design,

• i.e. base design on a thorough analysis
of problem and solution domain.

item probability

for change

Object from application [domain] Low
Long-lived information structures Low
Passive object’s attribute Medium
Sequences of behaviour Medium
Interface with outside world High
Functionality High

westphal
Bleistift

Development Approaches
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
q
–

48/51

task, problem

outside-in

inside-out

top-down

bottom-up

u
se
r
in
te
rf
ac
e

system software, hardware

• top-down risk: needed functionality hard to realise on target platform.

• bottom-up risk: lower-level units do not “fit together”.

• inside-out risk: user interface needed by customer hard to realise with existing system,

• outside-in risk: elegant system design not reflected nicely in (already fixed) UI.

Transform vs. Write-Down-and-Check
–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
d
es
q
–

49/51

(Σ× A)ω

Analyst

Tron

Joystick?

. . .

Keyboard?

Control

Player
colour
score
direction
speed

Gameplay Render

OpenGL?

. . .

aalib?

AI?

Segment
x0, y0
x1, y1
colour

Engine
areawidth
areaheight

1..∗

notifyupdate

0..∗

head

world

1..∗

Main

External
inputs

• Keyboard

• Joystick

• . . .

Game Logic

• player scores
• interface inputs/engine

(Physics) Engine

• physical objects
• collision notification

Output

• Graphics (from
ASCII to bitmap;
native or via API)

• Sound

• . . .

notifyupdate ?

?

•

n

•
w e

s

resigned

X/

LSC: name
AC: true
AM: invariant I: permissive

User Game

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

References

–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

50/51

References
–
1
4
–
2
0
1
5
-0
7
-0
2
–
m
a
in

–

51/51

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language – Towns, Buildings, Construction. Oxford University Press.

Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, E., and Stal, M. (1996). Pattern-Oriented Software Architecture – A System of

Patterns. John Wiley & Sons.

Gamma, E., Helm, R., Johnsson, R., and Vlissides, J. (1995). Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik Spektrum, 31(5):425–434.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274.

Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley.

JHotDraw (2007). http://www.jhotdraw.org.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). Uppaal in a nutshell. International Journal on Software Tools for Technology Transfer,
1(1):134–152.

Lehman, M. M. and Belady, L. (1985). Program Evolution. Process of Software Change. Academic Press.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with the Tools and Materials

Approach. dpunkt.verlag/Morgan Kaufmann.

http://www.jhotdraw.org

	Contents of the Block ``Design''
	Contents & Goals
	Implementing CFA Cont'd
	Recall: Implementable CFA
	Recall: Greedy CFA Semantics
	Recall: Implementing CFA
	Model vs. Implementation

	Uppaal Query LanguageLarsenPetterssonYi1997,BehrmannDavidLarsen2004
	The Uppaal Query Language
	Satisfaction of Uppaal Queries by Configurations
	Satisfaction of Uppaal Queries by Configurations
	Satisfaction of Uppaal Queries by Configurations
	Satisfaction of Uppaal Queries by Configurations
	Satisfaction of Uppaal Queries by Configurations
	CFA Model-Checking

	UML State Machines
	UML Core State Machines
	Event Pool and Run-To-Completion
	Composite (or Hierarchical) States
	Example
	Would be Too Easy…
	Rhapsody Architecture

	UML Modes
	UML and the Pragmatic Attribute
	With UML it's the Same uniblau[http://martinfowler.com/bliki]
	UML-Mode of the Lecture: As Blueprint

	Architecture Patterns
	Introduction
	Example: Layered Architectures
	Example: Layered Architectures Cont'd
	Example: Three-Tier Architecture
	Layered Architectures: Discussion
	Example: Pipe-Filter
	Example: Model-View-Controller

	Design Patterns
	Design Patterns
	Example: Strategy
	Example: Pattern Usage and Documentation
	Example: Singleton and Memento
	Example: Mediator, Observer, and State
	Meta Design Pattern: Inversion of Control
	Design Patterns: Discussion
	Libraries and Frameworks
	Reference Architecture Example: Games
	Quality Criteria on Architectures
	Software Entropy
	Development Approaches
	Transform vs. Write-Down-and-Check

	References
	References

