NEXT TUTOR\AL : MONDAY
NEXT TUTOR\A - MowpAr

Softwaretechnik / Software-Engineering

Lecture 13: Behavioural Software Modelling

2015-06-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

Communicating Finite Automata

presentation follows (Olderog and Dierks, 2008)

20150629

425

Contents of the Block “Design”

- 13 - 2015-06-2

(i) Introduction and Vocabulary
(ii) Principles of Design

Introdu

n

Development
a) modularity Process, Metrics
b) separation of concerns
<) information hiding and data encapsulation
d) abstract data types, object orientation
- Requirements
i) Software Modelling m”m:a.;w

) views and viewpoints, the 4-+1 view
b) model-driven/based software engineering
<) Unified Modelling Language (UML)

d) modelling structure

1. communicating finite automata
Uppaal query language

basic state-machines

an outlook on hierarchical state-machines

Invited Talks :
Y T

n Patterns Wrap-Up Lis 237, Do

Channel Names and Actions

To define communicating finite automata, we need the following sets of symbols:
o Aset (a,b €) Chan of channel names or channels.

@ For each channel a € Chan, two visible actions:
a? and a! denote input and output on the channel (a?,a! ¢ Chan).

o 7 ¢ Chan represents an internal ac

o (a,8€) Act :={a? | a € Chan} U {a! | a € Chan} U {7} is the set of actions.

© An alphabet B is a set of channels, i.e. B C Chan.

o For each alphabet B, we define the corresponding action set
By :={a?|ae B}U{a!|ac BYU{r}.

Note: Chanyy = Act.

~ 13- 2015.06-20 - Scfa -

246

546

Contents & Goals

6-20 - Sprelim —

Last Lecture:
« Class diagrams, object diagrams, (Proto-)OCL

T

Lecture:

ities for following tasks/questions.

Educational Objectives: Capal

* What is a communicating finite automaton?
= Which two kinds of tran

en a network of CFA, what are its computation paths?

ions are considered in the CFA semantics?

« s this configuration / location reachable in the given CFA?

Content:

« Networks of Communicating Finite Automata
= Uppaal Demo
« Implementable CFA

Integer Variables and Expressions, Resets

o Let (v,w €) V be a set of ((finite domain) integer) variables.
By (¢ €) ¥(V) we denote the set of integer expressions over V' using
function symbols +, —,...,>, #,

« A modification on v is

=p, veV, pel(V).

By R(V') we denote the set of all modifications.

© By 7 we denote a finite list (ry,...,7,), n € Ny, of modifications
ri € R(V); () is the empty list (n = 0).

* By R(V)* we denote the set of all such

Communicating Finite Automata
B tunl

MJ.F

Definition. A icating finite is a structure

A= (LB, V. E, lini)

where
e (te)Lisa
* B C Chan,
* V: aset of data variables,
© ECLxByx®(V)xR(V)* x L: aset of directed edges such that
SN AT
(4, a, 0,7, ") € EAchan(a) €U = ¢ = true.
baolea.
mn_wmw (¢, a1, 0,7 ¢") from location £ to £’ are labelled with an action
a, alguard ¢, and a list 7 of modifications.
o {;n; is the initial location.

e set of locations (or control states),

T 746

Helpers: Extended Valuations and Effect of Resets

o 11V = (V) is a valuation of the variables,

« A valuation v of the variables canonically assigns an integer value 1/(¢p) to each
integer expression € ®(V).

o |= C (V= 2(V)) x B(V) is the canonical satisfaction relation between valuations
and integer expressions from (V)

¢ W=xry, P=§xp3,9h03
v(y) =13

» VE x#0

T 10746

ChoicePanel: waTER? \ per selected =

m\«miim (idley WATER?, ks _ennlliod,< 2, smber- \

soft_selected request_sent

DSOFT!

DOK?

Ny 2
Dok ?,
Ao,

half_idle Avu et)

. L= idle, wslehed, .. 3

“1a-

Helpers: Extended Valuations and Effect of Resets

v:V — (V) is a valuation of the variables,

A valuation v of the variables canonically assigns an integer value () to each
integer expression € (V).

o £ C (V= 2(V)) x ®(V) is the canonical satisfaction relation between valuations
and integer expressions from ®(V')
v=§xn3,ymlo)
Effect of modification » € R(V) on v, denoted by
° TERWV)c k/, VY ve=03):0 @
ﬁi&. fa=v,@ vix=9xIG)=2 &

se® VIxi01()-0 ®

W= (@Dl -l YDeol
mxla&ti

v(a), othen

o We set v[(r;

from left to right.

That is, modifications are executed sequenti

Vie=3, g2 x =B = § w2,
Nl 415313

_
10/46

—Scfa—

2015-06

“ia-

Operational Semantics of Networks of FCA

tion. Let A; = (Li, Bi, Vi, By, fins1), 1 < i < n, be communicat-
te automata.

Def

ing

The operational semantics of the network of FCA C(A;, ..., A,) is the

labelled transition system confgueahioss Inbels _ (abelleol Aroicohins
relaRons

/ 4

T(C(Ay,..., Ay)) = (Conf, Chan U {r},{2] A € Chan U {r}}, Cini)
{
where (b0, 0) & whaba g xﬁwﬁx\»

RN I sl
o Conf ={{lv) | t; € Li,v:V = 2(V)},

© Cini = (lini, Vini) With vini(v) = 0 for all v € V.

] The transition relation consists of transitions of the following two types.

Operational Semantics of Networks of FCA
e e)

 An internal transition (Z.v) 5 (,1') occurs if there is i € {1,...,n} and

o there is a T-edge (£, 7,1, () € F such that
v “Sifte valuabon sabifles gual”
o 0 =10t =1, Sautowatn. i Chnges (ocerFin”
eV =il W s v wodifed Gy BT

« A synchronisation transition AN v) LN AM‘E‘V occurs if there are i, j € {1,....n}
with i # j and o

s 3

L, 73, () € Bi and (05,07, ;. 7, }) € Ej such that

o there are edges ({;,

° vI=pi Npj,
o 0 =10t

1t =
 Nowkput ek Hew ipue

This style of commu n is known under the names “rendezvous”,

“ ", “blocking’ ication (and possibly many others).

-

y '

Transition Sequences, Reachability

© A transition sequence of C(A,..., A,) is any (in)finite sequence of the form
L E——
(Bo,v0) 225 (T1,01) 23 (T3, 0m) 2 ...
with —

 (lo, 1) = Cini,
o foralli € IN, there is 2“5 in T(C(Ay, .. Ay)) with (6, 1) 255 (6iy, vi1)

« A configuration ((, v) is called reachable (in C(A;, .. .,.A,)) if and only if there

is a transition sequence of the form

(Loy) 255 (€1, mn) 25 (lg,v5) 225 . 20 (0, 0,) = (0,0)

« Alocation (s called reachable if and only if any configuration (7,v) is reachable,
i.e. there exists a valuation v such that (7, v) is reachable.

® The network C(Ay,...,A,) is said to have a deadlock if and only if there is a

configuration) such that
o %
35 € TC(AL ., A, (.)€ Conf e (L) 2 (1), Dekssoc

1226

A CFA Model Is Software

Definition. Software is a finite description ' of a (possibly
infinite) set [S] of (fnite or infinite) computation paths of
the form . o

0oy oy
where
o 0; €%, i € Ny, is called state (or configuration), and
« i € A, i € Ny, is called action (or event).
The (possibly partial) function [-] : § - [S] is called in-
terpretation of S.

o Let C(A;
o £ = Conf
o A=ChanU{r}

... Ay) be a network of CFA.

o [C] = {7 = (fo,v0) 2 (T,11) 225 (fa,10) 2% - | 7 is a computation path of C}.

* Note: the structural model just consists of the set of variables and the locations of C.

T 15/46

Example

¢ _selected

=

ChoicePanel:

. = Tea
~

o Sdet), e t> BER (G nre) s T Ly s) s

_em=1 \

Lo 3
“OSal th o demlloc,

5-06

1326

—13-201

Uppaal

etal., 1997; Behrmann et al., 2004)

T 17746

Model Architecture — Who Talks What to Whom

ChoicePanel

DWATER DTEA

DSOFT

SofDi : : 7 Tsi

t [L3 broaffcast.
FILLUP.

"« Note: Uppaal does not support the definition of scopes for channels — that s, ‘Service’
could send “WATER” if the modeler wanted to.

14/56
CFA Model-Checking
ion. The model-checking problem for a network C of commu-
inite automata and a query F' is to decide whether
(C,F) el
CeF
WM = EQ w=0
on. The model-checking problem for communicating
tomata is decidable.
24/46

Example: Invariants in the Model

9 - Suppaal

2015-06-

13

=

w>0

et

ChoicePanel:

Implementing Communicating Finite Automata

LDENBURG

Uppaal Architecture

25/46

Implementing CFA

st : | idle, weel, ssel, tsel, reqs, half)i

fake.event(E : { TAU, VATER, SOFT, TEA, ..

bool stable = 1;
sviteh (s0) {

f—~ — = — 3]

26746

H
2
=

OLDENBURG

[N

5 (vater snabled) [st i= weel; stable 1= 0]

case SOFT
i
case weal

switen (B) |
case TAU

2015-06-29 - Simpl —

“ia-

2845

send DWATER(); st := reqs;

29746

Recall: Universal LSC Example

=
]
=

EEER

27146
Would be Too Easy...
(lo,mo; = = 0);
E
w L om . (l,m1iz =0) E
y
@ O X=1 mo \ ke
myd=1) (la,my;x = 0)
« How are we supposed to implement that? 7 r
© There is non-determinism in the upper automaton, (o mziz=1)
« internal transitions can interleave, one interleaving leads
to a deadlock. T
* We are not! (I3,maiz = 1)
* We define
« deterministic CFA,
 a greedy semantics for internal transitions.
and only implement deterministic CFA using the greedy semantics. o

Deterministic CFA Deterministic CFA Greedy CFA Semantics

« The communicating finite automaton A = (L, B, V. F, {iu:) « The communicating finite automaton A = (L, B, V, E, (i) o Greedy semantics:
is called deterministic if and only if is called deterministic if and only if

 each input synchronisation transition (plus: system start) of automaton A is followed

« for each location £, @ for each location ¢, by a maximal sequence of internal transitions or output transitions of .A.
o cither all edges with ¢ as source location have pairwise different input actions, o cither all edges with £ as source location have pairwise different input actions, o Maximal: cannot be extended by an internal transition.
© or there is no edge with an input action starting at o or there is no edge with an input action starting at £,) o
and all edges starting at £ have pairwise (logically) disjoint guards. and all edges starting at £ have pairwise (logically) disjoint guards. There may still be interleaving of the internal transitions, but (by forbidding shared

variables for controllers) cannot be observed outside of an automaton.
., A,) be marked as

> %50 « Let each automaton in the network C(A1
3 @\v either environment or controller. Example:
y snvironment or controller :
~F %

We call C implementable if and only if, for each controller A in C,

V
LO 3»;%@5;%, Om./
(PAL) >) A reads/writes only its local variables, Vimvees 20

1 2) = febe may also read variables written by envir

10 .
nent automata, F? o . v >-10
but only in modification vectors of edges with input synchronisation, @u @ o vt 1

(iii) A is locally deadlock-free, i.e. enabled edges with output-actions are not blocked forever.

wenv<10
Ve =v_eny+ 1

" Az

« Note: implementable (i) and

can be checked syntactically. © Ay is implementable in C(A1, A2.1,€) (environment: only &)

) " Property (i) is a property of the whole network. T deterministic: v/,
g Can be checked with Uppaal P « only local variables, environment variables with input: ¢,
i (AN) —s (AL) 4 e locally deadlock-free: /.
. . for each edge (£, a, o, 7, ¢') of A e Ay is not implementable in C(A1, A22,&)
T 3126 T 3146 T
Model vs. Implementation References
Behrmann, G., David, A, and Larsen, K. G. (2004). A tutoria on uppaal 2004-L1-17, Technica rport, Aalborg Univrsity, Denmark
» Now an implementable model C(Aj, ..., A,) has two semantics: Glinz, M. (2008). Modellerung in der Leh Informatik Spektrum, 31(5):425-434.
) Harel, . (1987). Statechart: A visual frmaism for complx systems, Sciance of Computer Programming, 8(3):231-274.
® [Clets — standard semantics. Larsn, K. G, Pettersson, P., and Yi, W. (1997). UppAAL i a nutshel. Internatonal Journal on Software Tools for Technology Trante,
o [Clyra — greedy semantics. 13e-152
Ludevig, J. and Lichter, H. (2013). Software Engineeing. dpunk.velag. 3. edtion.
Oderog, E-R. and Diers, H. (2008). Reak-Time Sstems - Fomal Specificaton and Automati Verification, Cambrid University Pres
o Are they related in any way?
References

2015-06-29

13- 2015.06-20 - main —

3348 45745 46,

