
–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 04: More Process Modelling

& Software Metrics

2015-05-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
re
li
m

–

2/91

Last Lecture:

• process, model, process vs. procedure model

• code & fix, waterfall, S/P/E programs, (rapid) protoyping

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• what is evolutionary, incremental, iterative?

• what’s the fundamental idea of the spiral model? where’s the spiral?

• what is the difference between procedure and process model?

• what are the constituting elements of “V-Modell XT”? what project types does it support,
what is the consequence? what is tailoring in the context of “V-Modell XT”?

• what are examples of agile process models? what are their principles? describe XP, Scrum

• what is a nominal, . . . , absolute scale? what are their properties?

• which properties make a metric useful?

• what’s the difference between objective, subjective, and pseudo metrics?

• compute LOC, cyclomatic complexity, LCOM, . . . for this software

• Content:

• non-linear procedure models cont’d, process models (V-Modell XT, Scrum, . . .)

• scales, metrics

Non-Linear Procedure Models

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

3/91

Evolutionary and Iterative Development
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
ev
o
in
ci
te
r
–

4/91

Analysis of Requirements
Use on Target System

Defined Steps
Preliminary Results Used

Complete Plan

Rapid
Prototyping

Evolutionary
Development

Iterative
Development

Incremental
Development

. . .

yes

to some amount

to a low amount

evolutionary software development — an approach which includes evolutions

of the developed software under the influence of practical/field testing. New and

changed requirements are considered by developing the software in sequential steps

of evolution.

Ludewig & Lichter (2013), flw. (Züllighoven, 2005)

iterative software development — software is developed in multiple iterative

steps, all of them planned and controlled. Goal: each iterative step, beginning with

the second, corrects and improves the existing system based on defects detected

during usage. Each iterative steps includes the characteristic activities analyse,

design, code, test. Ludewig & Lichter (2013)

Incremental Development
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
ev
o
in
ci
te
r
–

5/91

Analysis of Requirements
Use on Target System

Defined Steps
Preliminary Results Used

Complete Plan

Rapid
Prototyping

Evolutionary
Development

Iterative
Development

Incremental
Development

. . .

incremental software development — The total extension of a system under

development remains open; it is realised in stages of expansion. The first stage is

the core system. Each stage of expansion extends the existing system and is subject

to a separate project. Providing a new stage of expansion typically includes (as with

iterative development) an improvement of the old components.

Ludewig & Lichter (2013)

• Note: (to maximise confusion) IEEE calls our “iterative” incremental:

incremental development — A software development technique in which requirements

definition, design, implementation, and testing occur in an overlapping, iterative (rather

than sequential) manner, resulting in incremental completion of the overall software product.

IEEE 610.12 (1990)

• One difference (in our definitions):

• iterative: steps towards fixed goal,

• incremental: goal extended for each step; next step goals may already be planned.

Examples: operating system releases, short time-to-market (→ continuous integration).

westphal
Bleistift

The Spiral Model

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

6/91

Quick Excursion: Risk and Riskvalue
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sp
ir
a
l
–

7/91

risk — a problem, which did not occur yet, but on occurrence threatens important

project goals or results. Whether it will occur, cannot be surely predicted.

Ludewig & Lichter (2013)

riskvalue = p ·K

p: probability of problem occurrence, K: cost in case of problem occurrence.

105

106

107

108

cost in case
of incidence
/ e

0.01 0.1 1 10 100 500
incidence prob-
ability p / 10−3

acceptable risks

inacceptable

risks

extreme

risks

• Avionics requires: “Average Probability per Flight Hour for Catastrophic Failure Conditions of
10−9 or ‘Extremely Improbable”’ (AC 25.1309-1).

• “problems with p = 500 · 10−3 = 0.5 are not risks, but environment conditions to be dealt with”

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

The Spiral Model (Boehm, 1988)
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sp
ir
a
l
–

8/91

Barry W. Boehm

Repeat until end of project (successful completion or failure):

(i) determine the set R of risks threatening the project;
if R = ∅, the project is successfully completed

(ii) assign each risk r ∈ R a risk value v(r)

(iii) for the risk r0 with the highest risk value, r0 = max{v(r) | r ∈ R},
find a way to eliminate this risk, and go this way;
if there is no way to eliminate the risk, stop with project failure

Advantages:

• we know early if the project goal is unreachable,

• knowing that the biggest risks are eliminated gives a good feeling.

Note: risk can by anything; e.g. open technical questions (→ prototype?), but also
lead developer leaving the company (→ invest in documentation), changed market
situation (→ adapt appropriate features), . . .

westphal
Bleistift

Wait, Where’s the Spiral?
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sp
ir
a
l
–

9/91

A concrete process using the Spiral Model could look as follows:

t (cost, project progress)

t0 t1 t2 t3

- fix goals, conditions, - risk analysis, - develop and test, - plan next phase,

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Process Models

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

10/91

From Procedure to Process Model
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
ro
ce
ss
es

–

11/91

A process model may describe:

• organisation, responsibilities, roles;

• structure and properties of documents;

• methods to be used, e.g. to gather requirements or to check intermediate results

• steps to be conducted during development, their sequential arrangement, their
dependencies (the procedure model);

• project phases, milestones, testing criteria;

• notations and languages;

• tools to be used (in particular for project management).

Process models typically come with their own terminology (to maximise
confusion?), e.g. what we call artefact is called product in V-Model terminology.

Process models are legion; we will take a closer look onto:

• V-Model XT, (Rational) Unified Process, Cleanroom, Agile (XP, Scrum)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Software and Process Metrics

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

45/91

Software and Process Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ci
n
tr
o
–

46/91

• To systematically compare and improve industrial products, we need to
precisely describe and assess the products and the process of creation.

• This common practice for many material good, e.g. cars

• fuel consumption,

• size of trunk,

• fixed costs per year,

• time needed to change headlight’s light bulb,

• clearance (accuracy of fit and gaps of, e.g., doors)

• . . .

Note: all these key figures are models of products — they reduce everything but
the aspect they are interested in.

• Less common practice for immaterial goods like Software.

• It should be — (objective) measures are central to engineering approaches.

• Yet: it’s not that easy for software.

Excursion: Scales

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

47/91

Scales and Types of Scales
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

48/91

• measuring maps elements from a set A to a scale M :

m : A → M

• we distinguish

(i) nominal scale

• operations: = (and 6=)

(ii) ordinal scale

• operations: =, </> (with transitivity), min/max, percentiles (e.g. median)

(iii) interval scale (with units)

• operations: =, <, >, min/max, percentiles, ∆

(iv) rational scale (with units)

• operations: =, <, >, min/max, percentiles, ∆, proportion, 0

(v) absolute scale

• a rational scale where M comprises the key figures itself

Nominal Scale
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

49/91

m : A → M

• operations: = (and 6=)

• that is, there is no (natural) order between elements of M ,

• the lexicographic order can be imposed, but is not related to measured information
(thus not natural).

• general example:

• nationality, gender, car manufacturer, geographic direction, . . .

• Autobahn number, train number, . . .

• software engineering example:

• programming laguage

•

Ordinal Scale
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

50/91

m : A → M

• operations: =, <, >, min/max, percentiles (e.g. median)

• there is a (natural) order between elements of M , but no (natural) notion of
distance or average

• general example:

• strongly agree > agree > disagree > strongly disagree

• administrative ranks: Chancellor > Minister

• ranking list, leaderboard:
finishing number tells us who was, e.g. faster, than who; but nothing about how
much faster 1st was than 2nd

• types of scales, . . .

• software engineering example:

• CMMI scale (maturity levels 1 to 5)

•

Interval Scale
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

51/91

m : A → M

• operations: =, <, >, min/max, percentiles, ∆

• there’s a (natural) notion of difference ∆ : M ×M → R,

• but no (natural) 0

•

• general example:

• temperature in Celsius (no zero),

• year dates,
two persons, born B1, B2, died D1, D2 (all dates beyond, say, 1900) — if
∆(B1, D1) = ∆(B2, D2), they reached the same age

• software engineering example:

• time of check-in in revision control system,

•

Rational Scale
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

52/91

m : A → M

• operations: =, <, >, min/max, percentiles, ∆, proportion, 0

• the (natural) zero induces a meaning for proportion m1/m2

• general example:

• age (“twice as old”), finishing time, weight, pressure, . . .

• price, speed, distance from Freiburg, . . .

• software engineering example:

• runtime of a program for certain inputs,

•

Absolute Scale
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

53/91

m : A → M

• M = N0,

• a rational scale where M comprises the key figures itself

• absolute scale has median, but in general not an average in the scale.

• general example:

• seats in a bus, number of public holidays, number of inhabitants of a country, . . .

• “average number of children per family: 1.203” – what is a 0.203-child? the
absolute scale has been viewed as a rational scale, makes sense for certain
purposes

• software engineering example:

• number of known errors,

•

Communicating Figures

–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

54/91

Median and Box-Plots
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
sc
a
le
s
–

55/91

M1 M2 M3 M4 M5

LOC 127 213 152 139 13297

• arithmetic average: 2785.6

• median: 127, 139, 152, 213, 13297

• a boxplot visualises 5 aspects of data at once
(whiskers sometimes defined differently, with “outliers”):

100% (maximum)

75% (3rd quartile)

50% (median)

25% (1st quartile)

0% (minimum)

40.000

30.000

20.000

10.000

median: 2,078

average: 7,033.027

LOC lecture’s *.tex files

Software Metrics

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

56/91

Software Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

57/91

metric — A quantitative measure of the degree to which a system, compo-
nent, or process posesses a given attribute.
See: quality metric. IEEE 610.12 (1990)

quality metric — (1) A quantitative measure of the degree to which an item
possesses a given quality attribute.
(2) A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the software
possesses a given quality attribute. IEEE 610.12 (1990)

Recall: Metric Space [math.]
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

58/91

Definition. [Metric Space] LetX be a set. A function d : X×X → R

is called metric on X if and only if, for each x, y, x ∈ X,

(i) d(x, y) ≥ 0 (non-negative)

(ii) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

(iii) d(x, y) = d(y, x) (symmetry)

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

(X, d) is called metric space.

Software Metrics: Motivation and Goals
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

59/91

Important motivations and goals for using software metrics:

• Support decisions

• Quantify experience, progress, etc.

• Assess the quality of products and processes

• Predict cost/effort, etc.

Metrics can be used:

• descriptive or prescriptive:

• “the current average LOC per module is N” vs. “a prodecure must not have more then
N parameters”

• a descriptive metric can be diagnostic or prognostic:

• “the current average LOC per module is N” vs. “the expected test effort is N hours”

• Note: prescriptive and prognostic are different things.

• Examples for diagnostic/guiding use:

• measure time spent per procedure before starting “optimisations”,

• focus testing effort accordingly, e.g. guided cyclomatic complexity,

• develop measures indicating architecture problems, (analyse,) then focus re-factoring

Requirements on Useful Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

60/91

Definition. A thing which is subject to the application of a metric is called
proband. The value m(P) yielded by a given metric m on a proband P
is called valuation yield (‘Bewertung’) of P .

In order to be useful, a (software) metric should be:

• differentiated – worst case: same valuation for all probands

• comparable – ordinal scale, better: rational (or absolute) scale

• reproducible – multiple applications of a metric to the same proband should yield
the same valuation

• available – valuation yields need to be in place when needed

• relevant – wrt. overall needs

• economical – worst case: doing the project gives a perfect estimatio of duration,
but is expensive;
irrelevant metrics are not economical (if not available for free)

• plausible – (→ pseudo-metric)

• robust – developers cannot arbitrarily manipulate the yield; antonym: subvertible

Requirements on Useful Metrics: Examples
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

61/91

characteristic
(‘Merkmal’)

positive example negative example

differentiated program length in LOC CMM/CMMI level below 2

comparable cyclomatic complexity review (text)

reproducible memory consumption grade assigned by inspector

available number of developers number of errors in the
code (not only known ones)

relevant expected development cost;
number of errors

number of subclasses
(NOC)

economical number of discovered errors
in code

highly detailed timekeeping

plausible cost estimation following
COCOMO (to a certain
amount)

cyclomatic complexity of a
program with pointer
operations

robust grading by experts almost all pseudo-metrics

(Ludewig and Lichter, 2013)

Software Metrics: Blessing and Curse
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
cs

–

62/91

Application domains for software metrics:

• Cost metrics (including duration)

• Error metrics

• Volume/Size metrics

• Quality metrics

Being good wrt. to a certain metric
is in general not an asset on its own.
In particular critical: pseudo-metrics for quality (→ in a minute).

Kinds of Metrics

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

63/91

Kinds of Metrics: ISO/IEC 15939:2011
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

64/91

base measure — measure defined in terms of an attribute and the method
for quantifying it. ISO/IEC 15939 (2011)

Examples:

• lines of code, hours spent on testing, . . .

•

derived measure — measure that is defined as a function of two or more
values of base measures. ISO/IEC 15939 (2011)

Examples:

• average/median lines of code, productivity (lines per hour), . . .

•

Kinds of Metrics: by Measurement Procedure
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

65/91

objective metric subjective metric pseudo metric

Procedure measurement,
counting, poss.
normed

review by inspector,
verbal or by given
scale

computation (based on
measurements or
assessment)

Advantages exact, reproducible,
can be obtained
automatically

not subvertable,
plausible results,
applicable to complex
characteristics

yields relevant, directly
usable statement on not
directly visible
characteristics

Disadvan-
tages

not always relevant,
often subvertable, no
interpretation

assessment costly,
quality of results
depends on inspector

hard to comprehend,
pseudo-objective

Example,
general

body height, air
pressure

health condition,
weather condition
(“bad weather”)

body mass index (BMI),
weather forecast for the
next day

Example in
Software
Engineering

size in LOC or NCSI;
number of (known)
bugs

usability; severeness
of an error

productivity; cost
estimation following
COCOMO

Usually used
for

collection of simple
base measures

quality assessment;
error weighting

predictions (cost
estimation); overall
assessments

(Ludewig and Lichter, 2013)

Some Objective Metrics, Base Measures
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

66/91

dimension name unit measurement procedure

size of group,
department,
etc.

headcount – number of filled positions (rounded on
0.1); part-time positions rounded on
0.01

program size – LOCtot number of lines in total

net program
size

– LOCne number of non-empty lines

code size – LOCpars number of lines with not only comments
and non-printable

delivered
program size

– DLOCtot,
DLOCne,
DLOCpars

like LOC, only code (as source or
compiled) given to customer

number of
units

unit-count – number of units, as defined for version
control

(Ludewig and Lichter, 2013)

• Note: who measures when?

Assessment of Subjective Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

67/91

kind of
assessment

example problems countermeasures

Statement “The
specification
is available.”

Terms are
ambiguous,
conclusions are
hardly possible.

Allow only certain statements,
characterise them precisely.

Assessment “The module
is coded in a
clever way.”

No basis for
comparisons.

Only offer particular outcomes,
put them on an (at least
ordinal) scale.

Grading “Readability
is graded
4.0.”

Subjective,
grading not
reproducible.

Define criteria for grades; give
examples how to grade

(Ludewig and Lichter, 2013)

Some Subjective Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

68/91

• Norm Conformance
Considering (all or some of)

• size of units (modules etc.)

• labelling

• naming of identifiers

• design (layout)

• separation of literals

• style of comments

• Locality

• use of parameters

• information hiding

• local flow of control

• design of interfaces

• Readability

• data types

• structure of control flow

• comments

• Testability

• test driver

• test data

• preparation for test evaluation

• diagnostic components

• dynamic consistency checks

• Typing

• type differentiation

• type restriction

(Ludewig and Lichter, 2013)

Practical Use of Grading-based Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
m
et
ri
ck
in
d
s
–

69/91

• Grading by human inspectors can be used to construct sophisticated
grading schemes, see (Ludewig and Lichter, 2013).

• Premises for their practical application:

• Goals and priorities are fixed and known (communicated).

• Consequences of the assessment are clear and known.

• Accepted inspectors are fixed.

• The inspectors practiced on existing examples.

• Results of the first try are not over-estimated, procedure is improved
before results becoming effective.

• Also experienced developers work as inspectors.

• Criteria and weights are regularly checked and adjusted if needed.

Pseudo-Metrics

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

70/91

Pseudo-Metrics
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

71/91

Some of the most interesting aspects of software development projects
are hard or impossible to measure directly, e.g.:

• is the documentation sufficient and well usable?

• how much effort is needed until completion?

• how is the productivity of my software people?

• how maintainable is the software?

• do all modules do appropriate error handling?

Due to high relevance, people want to measure despite the difficulty in measuring.
Two main approaches:

di
ffe

re
nt

ia
te

d
co

m
pa

ra
bl

e
re

pr
od

uc
ib

le
av

ai
la

bl
e

re
lev

an
t

ec
on

om
ic

al
pl

au
sib

le
ro

bu
st

Expert review,
grading

(✔) (✔) (✘) (✔) ✔! (✘) ✔ ✔

Pseudo-metrics,
derived measures

✔ ✔ ✔ ✔ ✔! ✔ ✘ ✘

Pseudo-Metrics Cont’d
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

72/91

Note: not every derived measure is a pseudo-metric:

• average lines of code per module: derived, not pseudo
→ we really measure average LOC per module.

• use average lines of code per module to measure maintainability: derived, pseudo
→ we don’t really measure maintainability;
average-LOC is only interpreted as maintainability.

Not robust, easily subvertible (see exercises).

Example: productivity (derived).

• Team T develops software S with LOC N = 817 in t = 310h.

• Define productivity as p = N/t, here: ca. 2.64 LOC/h.

• Pseudo-metric: measure performance, efficiency, quality, . . . of teams by
productivity (as defined above).

• team may write

x

:=

y

+

z;

instead of x := y + z;

→ 5-time productivity increase, real efficiency actually decreased.

Pseudo-Metrics Cont’d
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

73/91

• Still, pseudo-metrics can be useful if there is a correlation with few false positives
and false negatives between valuation yields and the property to be measured:

valuation yield
low high

q
u
a
li
ty

high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

• Which may strongly depend on context information:

• if everybody adheres to a certain coding style,
LOC says “lines of code in this style” — this may be a useful measure.

McCabe Complexity
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

74/91

complexity — (1) The degree to which a system or component has a design
or implementation that is difficult to understand and verify. Contrast with:
simplicity.
(2) Pertaining to any of a set of structure-based metrics that measure the
attribute in (1). IEEE 610.12 (1990)

Definition. [Cyclomatic Number [graph theory]] Let G = (V,E) be a graph
comprising vertices V and edges E.
The cyclomatic number of G is defined as

v(G) = |E| − |V |+ 1.

Intuition: minimum number of edges to be removed to make G cycle free.

McCabe Complexity Cont’d
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

75/91

Definition. [Cyclomatic Complexity [McCabe, 1976]] Let G = (V,E) be the
Control Flow Graph of program P .
Then the cyclomatic complexity of P is defined as v(P) = |E|−|V |+p
where p is the number of entry or exit points.

1 vo id i n s e r t i o n S o r t (i n t [] a r r a y) {
2 f o r (i n t i = 2 ; i < a r r a y . l e n g t h ; i++) {
3 tmp = a r r a y [i] ;
4 a r r a y [0] = tmp ;
5 i n t j = i ;
6 whi l e (j > 0 && tmp < a r r a y [j −1]) {
7 a r r a y [j] = a r r a y [j −1] ;
8 j−−;
9 }

10 a r r a y [j] = tmp ;
11 }
12 }

Number of edges: |E| = 11
Number of nodes: |V | = 6 + 2 + 2 = 10
External connections: p = 2

→ v(P) = 11− 10 + 2 = 3

1

2

3

4

5

8

7

6

10

Entry

Exit

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

McCabe Complexity Cont’d
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

75/91

Definition. [Cyclomatic Complexity [McCabe, 1976]] Let G = (V,E) be the
Control Flow Graph of program P .
Then the cyclomatic complexity of P is defined as v(P) = |E|−|V |+p
where p is the number of entry or exit points.

• Intuition: number of paths, number of
decision points.

• Interval scale (not absolute, no zero
due to p > 0); easy to compute

• Somewhat independent from
programming language.

• Plausibility: doesn’t consider data.

• Plausibility: nesting is harder to
understand than sequencing.

• Prescriptive use: “For each procedure,
either limit cyclomatic complexity to
[agreed-upon limit] or provide written
explanation of why limit exceeded.”

1

2

3

4

5

8

7

6

10

Entry

Exit

westphal
Bleistift

Code Metrics for OO Programs (Chidamber and Kemerer, 1994)
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
p
se
u
d
o
–

76/91

metric computation

weighted methods per
class (WMC)

n∑

i=1

ci, n = number of methods, ci = complexity of method i

depth of inheritance tree
(DIT)

graph distance in inheritance tree (multiple inheritance ?)

number of children of a
class (NOC)

number of direct subclasses of the class

coupling between object
classes (CBO)

CBO(C) = |Ko ∪Ki|,
Ko = set of classes used by C, Ki = set of classes using C

response for a class
(RFC)

RFC = |M ∪
⋃

i
Ri|, M set of methods of C,

Ri set of all methods calling method i

lack of cohesion in
methods (LCOM)

max(|P | − |Q|, 0), P = methods using no common attribute, Q =
methods using at least one common attribute

• objective metrics: DIT, NOC, CBO; pseudo-metrics: WMC, RFC, LCOM

. . . there seems to be angreement that it is far more important to focus on
empirical validation (or refutation) of the proposed metrics than to propose
new ones, . . . (Kan, 2003)

Goal-Question-Metric

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

77/91

“
T
an
ke
r
S
u
m
m
it
E
u
ro
p
e”

vo
n
w
or
ld
2
4
in

d
er

W
ik
ip
ed
ia

au
f
D
eu
ts
ch
.
L
iz
en
zi
er
t
u
n
te
r
C
C
B
Y
-S
A

3
.0

ü
b
er

W
ik
im

ed
ia

C
o
m
m
o
n
s
-

h
tt
p
:/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg
/
w
ik
i/
F
ile
:T
an
ke
r
S
u
m
m
it
E
u
ro
p
e.
JP

G
#
/
m
ed
ia
/
F
ile
:T
an
ke
r
S
u
m
m
it
E
u
ro
p
e.
JP

G

–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
g
q
m

–

78/91

http://commons.wikimedia.org/wiki/File:Tanker_Summit_Europe.JPG#/media/File:Tanker_Summit_Europe.JPG

Goal-Question-Metric (Basili and Weiss, 1984)
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
g
q
m

–

79/91

The three steps of GQM:

(i) Define the goals relevant for a project or an organisation.

(ii) From each goal, derive questions which need to be answered to check whether
the goal is reached.

(iii) For each question, choose (or develop) metrics which contribute to finding
answers.

Note: we usually want to optimise wrt. goals, not wrt. metrics.

Development of pseudo-metrics:

(i) Identify aspect to be represented.

(ii) Devise a model the aspect.

(iii) Fix a scale for the metric.

(iv) Develop a definition of the pseudo-metric, how to compute the metric.

(v) Develop base measures for all parameters of the definition.

(vi) Apply and improve the metric.

Now, Which Metric Should We Use?
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
g
q
m

–

80/91

It is often useful to collect some basic measures before they are actually required, in
particular if collection is cheap:

• size

• of newly created and changed code,

• of separate documentation,

• effort

• for coding, review, testing, verification, fixing, maintenance, . . .

• for restructuring (preventive maintenance), . . .

• errors

• at least errors found during quality assurance, and errors reported by customer

• for recurring problems causing significant effort:
is there a (pseudo-)metric which correlates with the problem?

Measures derived from the above basic measures:

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• . . .

If in doubt, use the simpler measure.

Now, Which Metric Should We Use?
–
0
4
–
2
0
1
5
-0
5
-0
4
–
S
g
q
m

–

80/91

It is often useful to collect some basic measures before they are actually required, in
particular if collection is cheap:

• size

• of newly created and changed code,

• of separate documentation,

• effort

• for coding, review, testing, verification, fixing, maintenance, . . .

• for restructuring (preventive maintenance), . . .

• errors

• at least errors found during quality assurance, and errors reported by customer

• for recurring problems causing significant effort:
is there a (pseudo-)metric which correlates with the problem?

Measures derived from the above basic measures:

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• . . .

If in doubt, use the simpler measure.
LOC and changed lines over time (obtained by statsvn(1).

References

–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

90/91

References
–
0
4
–
2
0
1
5
-0
5
-0
4
–
m
a
in

–

91/91

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods. review and analysis. Technical
Report 478.

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE Transactions of Software

Engineering, 10(6):728–738.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5):61–72.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on Software Engineering,
20(6):476–493.

Hörmann, K., Dittmann, L., Hindel, B., and Müller, M. (2006). SPICE in der Praxis: Interpretationshilfe für Anwender und Assessoren.
dpunkt.verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC (2011). Information technology Software engineering Software measurement process. 15939:2011.

Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Schwaber, K. (1995). SCRUM development process. In Sutherland, J. et al., editors, Business Object Design and Implementation,

OOPSLA’95 Workshop Proceedings. Springer-Verlag.

Team, C. P. (2010). Cmmi for development, version 1.3. Technical Report ESC-TR-2010-033, CMU/SEI.

V-Modell XT (2006). V-Modell XT. Version 1.4.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with the Tools and Materials

Approach. dpunkt.verlag/Morgan Kaufmann.

	Contents & Goals
	Non-Linear Procedure Models
	Evolutionary and Iterative Development
	Incremental Development

	The Spiral Model
	Quick Excursion: Risk and Riskvalue
	The Spiral Model Boehm1988
	Wait, Where's the Spiral?

	Process Models
	From Procedure to Process Model
	Light vs. Heavyweight Process Models

	Phase Models
	The Phase Model

	V-Modell XT
	
	V-Modell XT
	V-Modell XT: Project Types
	V-Modell XT: Terminology
	V-Modell XT: Decision Points
	V-Modell XT: The V-World (naja…)
	V-Modell XT: Tailoring Instance
	V-Modell XT: Customer/Developer Interface
	V-Modell XT: Roles (a lot!)
	V-Modell XT: Disciplines and Products (even more!)
	V-Modell XT: Activities (as many?!)
	V-Modell XT: Procedure Building Blocks
	V-Modell XT: Example Building Block
	V-Modell XT: Development Strategies
	V-Modell XT: Development Strategies
	V-Modell XT: Discussion

	Rational Unified Process
	Rational Unified Process (RUP)

	Agile Process Models
	The Agile Manifesto
	Agile Principles
	Similarities of Agiles Process Models

	Extreme Programming (XP)
	Extreme Programming (XP) Beck1999

	Scrum
	Scrum
	Scrum Documents
	Scrum Process
	Scrum: Discussion

	Software and Process Metrics
	Software and Process Metrics

	Excursion: Scales
	Scales and Types of Scales
	Nominal Scale
	Ordinal Scale
	Interval Scale
	Rational Scale
	Absolute Scale

	Communicating Figures
	Median and Box-Plots

	Software Metrics
	Software Metrics
	Recall: Metric Space [math.]
	Software Metrics: Motivation and Goals
	Requirements on Useful Metrics
	Requirements on Useful Metrics: Examples
	Software Metrics: Blessing and Curse

	Kinds of Metrics
	Kinds of Metrics: ISO/IEC 15939:2011
	Kinds of Metrics: by Measurement Procedure
	Some Objective Metrics, Base Measures
	Assessment of Subjective Metrics
	Some Subjective Metrics
	Practical Use of Grading-based Metrics

	Pseudo-Metrics
	Pseudo-Metrics
	Pseudo-Metrics Cont'd
	Pseudo-Metrics Cont'd
	McCabe Complexity
	McCabe Complexity Cont'd
	Code Metrics for OO Programs ChidamberKemerer1994

	Goal-Question-Metric
	
	Goal-Question-Metric BasiliWeiss1984
	Now, Which Metric Should We Use?

	Process Metrics
	Assessment and Improvement of the Process
	
	CMMI
	CMMI Levels
	CMMI General/Specific Goals and Practices
	CMMI Statistics
	CMMI: Discussion
	SPICE / ISO 15504

	References
	References

