Softwaretechnik / Software-Engineering

Lecture 6: Requirements Engineering

2016-05-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Structure of Topic Areas

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.
Techniques
informal
semi-formal
formal

You Are Here.

Content

Introduction
Scales, Metics,
Costs.
Development

Process

Requirements
Engineering

Architecture &
Design

Uz

« Introduction

« Vocabulary: Requirements (Analysis)

o Usages of Requirements Specifications

« Requirements Specification
{s Desired Properties
« Kinds of Requirements

(o Analysis Techniques

 Documents
W. Dictionary
(o Specification
« Specification Languages
Le Natural Language

Topic Area Requirements Engineering: Content

VL6 e Introduction

ool s

i~ Natural Lar

{e Consister

s Scenarios

Live Seq

[<o Desired Properties
{~4e Kinds of Requirements
Lo Analysis Techniques

* Documents

L o ionary, Specification
Specification Languages

nguage

Ite Working Definition: Software
s Decision Tables
Wo Syntax, Semantics

ncy. Completeness.

Wo User Stories, Use Cases

uence Charts

Lo syntax, semantics

« Discussion

Introduction

Sn\\u?

T infocul

J s

1 ot
T

3w

°
Gutoflr ! vt s Oeroger Gusteme Oevhper a—
anfouncelent offer software contract

N

ey ey o b software delivery

ax)
requirement -
(1) A condition or capability needed by a user to solve a problem or achieve an ob-
jective.

(2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification. or other formally i
posed documents.

(3) A documented representation of a condition or capability s in (1) or (2).

IEEE 610,12 (1990)

requirements analysis -

(1) The process of studying user needs to arrive at a definition of system, hardware,
or software requirements.

@ hardware,

IEEE 610,12 (1990)

Requirements Specifications

®

S

Requirements Analysis.

The hardest single part of building a software system is deciding precisely what to build.

No other part of the conceptual work is as difficult as establishing the detailed technical
requirements ...

No other part of the work so cripples the resulting system if done wrong.

No other part is as difficult to rectify later. F.P. Brooks (Brooks, 1995)

in the sense of “finding out what the exact requirements are”.

“Analysing an existing requirements/feature specification” — later.
In the following we shall discuss:

(i) desired properties of

) (a selection of) analysis techniques
« requirements specifications,

« requirements specification documents, (iv) documents of the requirements
analy:

kinds of requirements
o dictionary,

« hard and soft,

« openand tacit,

« functional and non-functional.

« requirements specification ('Lastenheft),
lichtenheft),

« feature specification ('

« Note: In the following (unless otherwise noted), we discuss the feature spet
iie. the document on which the software development is based.
To maximise confusion, we may occasi 1
orjust specification should be clear from context...

= Recall: one and the same content can serve both purposes; only the title defines the purpose then.

W

of The Requirements Specification

et D)
) o

i - 4

or
ety ndnnen

« negotiation
(with customer, marketing department,or ..}

« design and implementation,

« without specification, programmers may just "ask
around" when in doubt, possibly yielding different
interpretations — difficultintegration

+ documentation, e, the user's manual,

« without specification, the users manual author can
only describe what the system does, not what it
should do (“every observation is a feature’)

« preparation of tests,
« withouta description of allowed outcomes, tests
are randomly searching for generic errors (like

= o

- - Ei

iy softare delivry

« acceptance by customer,

resolving later objections o regress claims,

« without specification, itis unclear at delivery time
‘whether behaviour is an error (developer needs to
fix) or correct (customer needs to accept and pay)
—+ nasty disputes, additional effort

o re-use,

ithout specification, re-use needs to be based on
re-reading the code — risk of unexpected changes

« later re-implementations

« the new software may need to adhere to
requirements of the old software; if not properly
specified, the new software needs to bea 11

the old — additional effort

crashes) - systema ardly possi

Requirements on Requirements Specifications

Arequirements specification should be

* correct
~ it correctly represents the wishes/needs of
the customer,

« complete §

- all requirements (existing in somebody's
head, or a document, or ..) should be present,

o relevant
- things which are not relevant to the project
should not be constrained,

N v
« consistent, free of contradictions &

~ each requirement is compatible with all other
requirements; otherwise the requirements are
not realisable,

« Correctness and completeness are
which is usually only in the custormer

ead,

o neutral, abstract
- arequirements specification does not
constrain the realisation more than necessary,

traceable, comprehensible
~ the sources of requirements are documented,
requirements are uniquely identifiable.

v

testable, objective §
— the final product can objectively be checked
for satisfying a requirement.

ined relative to something

— isis difficult to be sure of correctness and completeness.

o “Dear customer, please tell me what is in your head!” is in almost all cases not a solution!

Its not unusual that even the customer does ot precisely know...!

For example, the y

1237

Requirements on Requirements Specifications Requirements on Requirements Specification Documents Pitfall: Vagueness vs. Abstraction

A requirements specification should be The rep ion and form of a requi specification should be: Consider the following examples:
o comect « neutral, abstract « easily understandable, « easily maintainable - * Vague (not precise):
correctly represents the wish ds of - arequi ifi does not not unnecessarily com| creating and maintaining the requirements “the list of participants should be sorted conveniently”
the customer, constrain the realisation more than necessary, allaffected people should be able to specification should be easy and should not + Precise, abstract: ~
« complete the i need y effort et . s st
Excursion: Informal vs. Formal Techniques o precise - the st of st
the requirements specification should not + easily usable - « Precise, non-abstract:
o relevant Example: Requirements Engineering Atbag Contrller documented, introduce new unclarities or rooms for storage of and access to the requirements “the lst of participants should be sorted by
~ things wH jable. interpretation (— testable, objective), specification should not need significant effort
should not public static <T> void Collections::sort(List<T> list, Comparator ¢);
o consistent| where T is the type of participant records, ¢ compares immatriculation number numerically.”
- eachreq equirement be checked
£e). Note: Once again, its about compromises.
ot el « Avery precise objective requirements specification
« Comectnes may not be easly understandable by every affected person « Arequirements specification should always be as precise as possible (— testable, objective)
which i us > provide redundant explanations Itneed not denote exactly one solution;
—isisdiff] ™ « Itis not trivial to have both, low maintenance effort and low access effort. precisely acceptable sol ft
+ Fchuanables ashdetactd Time = (0.1) « Being toaspecific, may limit the design decisions of the developers, which may cause unnecessary costs.
o “Dearcustq + Fomserequemene —+ value low access effort higher, P .
’ Time » cashdetected() A it H arequirements specification document is much more often read than changed or written |« Idealised views advocate astrict scparation between
Its not unu {and most changes require reading beforehand). ~ requirements (“whatis to be done?”) and design (‘how are things to be done?’).
Forexample, | £ :
L 123 1337 1437
Kinds of Requirements: Functional and Non-Functional Kinds of Requirements: Hard and Soft Requirements
« Proposal: View software as a function + Example of a hard requirement:
Lt o, ia, - > 00,01,02, ... « Cashing a cheque over ' € must result in a new balance decreased by N
there is not a micro-cent of tolerance.
which maps sequences of inputs to sequences of outputs.
Examples « Examples of soft requirements:
Kinds of Requirements + Software “compute shipping costs’: « Software “traffic lights controller”: * Ifavending machine dispenses the selected item wi 5 clearly fine; if it takes 5 min. its clearly

wrong ~ where’ the boundary?

o itial state 0 initial state N " - o
® oo _r al state, o sas state. N « A car entertainment system which produces “noise” (due to limited bus bandwidth or CPU power)
© i1 shipping parameters 1: pedestrian presses button. in average once per hour s acceptable, once per minute is not acceptable.

(weight, size, destination. ..} 01,02, .. stop traffic, give green to pedestrians,

© 0y shipping costs i, button pushed again

s o0 e e

Andno more inputs, § : i1+ o1
The border between hard/soft is difficult to draw, and

Every constraint on things which are observable in the sequences

is a functional requirement (because it req ing for the function S).

Thus timing, energy consumption, etc. may be subject to functional requirements.

» Clearly non-functional requirements:
language, coding i odel portability.

16137

« as developer, we want i to be “as hard as possible”,

i.e.we want a clear right/wrong,

« as customer, we often cannot provide this clarity:
we know what is “clearly wrong” and we know what s “clearly right’, but we dorit have a sharp boundary.

— intervals, rates, etc. can serve as precise specifications of soft requirements.

Kinds of Requirements: Open and Tacit (A Selection of) Analysis Techniques

« open: customer is aware of and able to explicitly communicate the requirement,

= Good questions: How are things done today? What should be improved? :
237 223 233

o (semi-Jtacit:
(semi-)t . . Focus
customer not aware of something being a requirement (obvious to the customer current desired innovation
but not considered relevant by the customer, not known to be relevant). Analysis Technique situation situation consequences
Examples: . . . Analysis of existing data and documents [
’ Analyst Requirements Analysis Techniques
« buttons and screen of a mobile phone knows domain new to domain - Observation [
should be on the same side, - (Lot | —
g] Questionni i —
« important web-shop items should be on - requirements estionning wi Aémn:,iv questions =
the right hand side because the main 28 KRR Interview e
users are socialised with right-to-left S
reading direction. [e Modeling = =
’ 5L requirements g
 the ECU (embedded control unit) may g€ discoverable discoverable Experiments S
only be allowed use a certain amount of g8 R)
bus capacity 5. Prototyping m
£ hard/impossible to discover Participative development -
o distinguish don't care: (Gacitua et al, 2009)
intentionally left open to be decided by developer.
18737 19537 20737
Requirements Elicitation How Can Requirements Engineering Look In Practice?
* Observation: « Setupa core team for analysis (3 to 4 people), « The “raw material” is basis of a preliminary
Customers can not be assumed to be trained in stating/communicating requirements. include experts from the domain and requirements specification (audience: the
developers. Analysis benefits from highest developers) with open questions.
o Itis the task of the analyst tor skills and strong experience. Analysts need to communicate the
Goal: automate losing of a mai * ui requirements specification appropriately
o ask whatis wanted, Coal: automate opering/closing of a main During analysis, talk to decision makers (explain, give examples, point out particular
askwhatis not wanted, Amade up dial e e comer-cases). Requirements Documents
« establish precision, aceup detoge Userscan ww,;.maas& byateamof 2 Customers without strong maths/computer quire : 3
look out for contradictions, Analyst: So in the morning, you open the door at analysts, ca. 90 min. science background are often overstrained
) the main entrance? The resulting N ed and when “leftalone” with a formal requirements
+ anticipate exceptions, diffcultes, Customer Yesas told you. o The resulting ‘raw mat sorted an specification
comer-cases, 4 Every moming? assessed i half- or full-day workshops in a
« have technical background to know € Of course team of 6-10 people. . ionary. specified requirements.
technical difficulties, A: Also on the weekends? Search for, e g, contradictions between
" C: No, on weekends, the entrance stays closed. customer wishes, and for priorisation.
. i al) speci to A y .
costomer . Then it also remains closed of course. Note: The customer decides. Analysts may
A:And if you arell o on vacation? make proposals (different options to choose
« “test” own understanding by asking . Then M. M opens the door from). but the customer chooses. (And the
more questions. A:And f M. Mis not availabl, oo? choice is documented)
et t the . " C: Then the first client will knock on the window.
e to elicit the requirements. A: Okay. Now what exactly does ‘morning” mean?
D « Many customers do not want (radical) change, but improvement

« Requirements analysis should be based on a

« Note: do not mix up real-world/domain terms with ones only

Dictionary

nary.

« Adictionary comprises definitions and clarifications of terms that are relevant to the project and of
which different people (in particular customer and devel have different befor
agreeing on the dictionary.

P

Each entry in the dictionary should provide the following information:

the sense of
meaning (definition, explanation),

d jons (where not to use this terms),
validness (in time, in space, ...).
denotation, unique identifiers....,

‘open questions not et resolved, §

related terms, cross references.

Note: entries for terms that seemed “crystal clear” at first sight are not uncommon.
« All work on requirements should, as far as possible,
bedone using terms from the dictionary consistently and consequently.

The dictionary should in particular be negotiated with the customer
and used in communication (if not possible, at least developers should stick to dictionary terms).

ing’ in the software.
243

IEEE Recommended Pra
Software Requirements
Specifications

e Campa oty

27m

Dictionary Example

Example: Wireless Fire Alarm System

= During a project on designing a highly reliable, EN-54-25

conforming wireless communication protocol. we had to
learn that the relevant components of a fire alarm system are

o terminal participants
(heat/smoke sensors and manual indicators),

« repeaters a non-terminal participant),
« anda central unit (not a participant),

Repeaters and central unit are technically very similar, but
need to be distinguished to understand requirements. !
The dictionary explains these terms.

Excerpt from the dictionary (ca. 50 entries in total):
Part Apartofafireal he tral unit

Repeater Arepeateri i
or messages from the central unit to other participants.

participar

Central Unit A central unit is a part which receives messages from different assigned participants, as-
sesses the messages, and reacts, e by forwarding to persons or optical/acustic signalling devices

Terminal Participant A Each terminal partic-

g functionality.

Structure of a Requirements Document: Example

v
1 nTropucTion / © 5 GENERAL CONSTRAINTS AND REQUIREMENTS
s
o)
B o] Dby s et
bl

14 User Characteristcs

55 Compati
2 FUNCTIONAL REGUIREMENTS 5.6 Cost Constraints

57 Time Constraints
21 Functon Set 1 Bk

22 et

6 PRODUCT QUALITY REQUIREMENTS
Relabilty Robustness.
32 Interfaces to Hardware. 63 Maintainabity

3 REQUIREMENTS TO EXTERNAL INTERFACES

34 Communication Interfaces

4 REQUIREMENTS REGARDING TECHNICAL DATA 7 FURTHER REQUIREMENTS
41 Volume Requirements 71 System Operation
42 Peromance 72 Customisation

73 Requirements of nternal Users

255

(Ludewig and Lichter, 2013) based on (IEEE, 1998)

2873

Requirements Specification

spe n - A document that specifies,
« inacomplete, precise, verifiable manner,
the

« requirements, design, behavior, or other characteristics of a system or component,

and, often, the procedures for determining whether these provisions have been sat
ied. IEEE 610.12 (1990)

software requir ification (SRS) - Dt ion of the essential require-

ts (functi desigr ints, and attriby f the softy d

its external interfaces. IEEE 610.12 (1990)
2637

Content

o Introduction
W. Vocabulary: Requirements (Analysis)
e Usages of Requirements Spe

« Requirements Specification

« Desired Properties

o Kinds of Requirements
e Analysis Techniques

+ Documents

T Dictonary
L« Specification

Specification Languages

« Natural Language

2973

Specification Languages

Natural Language Patterns

Natural language requirements can be (tried to be) written as an instance of
the pattern “(4) (B) (C) (D) () (F)." (German grammar) where

A___| clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL.
also: MUST NOT (forbidden)

Q

is either “the system” or the concrete name of a (sub-)system

]

one of three possibilties:
« “does’, description of a system activity.
fers’ description of a function offered by the system to somebody.
o “isableif’
usage of a function offered by a third party, under certain conditions

extensions, in particular an object

the actual process word (what happens)
(Rupp and die SOPHISTen, 2009)
Example:

After office hours (—
abackup (= F)of al

, the system (= C) should (= B) offer to the operator (= D)
ew registrations to an external medium (= E)

30w

333

Requirements Specification Language

[Alanguage, often amachine-pi i ion of nat-
ural and formal language, used to express the requirements, design, behavior, or other
characteristics of a system or component.

For example, a design language or requirements specification language. Contrast

programming language: query language. IEEE 610.12 (1990)

ification | A icati pecial constructs
and, sometimes, verification protocols, used to develop, analyze, and document hard-

ware or software requirements. IEEE 610,12 (1990)

Other Pattern Example: RFC 2119

Natural Language Specification

explanation, example

Rl State each requirement | Name the actors, indicate whether the user or the system does
inactive voice something Not ‘the item s deleted

Express processes by
R2 full verbs.

" "has’ but ‘reads’ “creates': fullverbs require information
ibe the process more precisely. Not “when data is
consistent” but "after program P has checked consistency of the data’

Discover incompletely | In“t i a
R3 defined verbs. askwhom the message is addressed to.

Discover incomplete | Conditions of the form “if-else”
R4 conditions. need descriptions of the if- and the then-case.

Discover universal Are sentences with “neve
RS quar universally valid? Are ‘al" really all or are there exceptions.

Check nominalisations. | Nouns like “registration” often hide complex processes that need
R6 “register”

questions: who, where. for what?
term or does i

specific? s “user” generic oris a member of a specific classes meant?

If the specification says that something is “possi
“may’."should”. “must” happen,
clarity whois enforcing or prohibiting the behaviour.

" “impossi

Y

)
implicit assumptions (here: there seems to be a firewall.

31

32w

Tell Them What You've Told Them. ..

0 Gom S wan
Varch 1oa7

C 2 G Ky vords

several words e used 10 sionily
e “Thase worcs ara of B

Shoul & neorporate th's pivase nea

Braaner Best Qurrom practice tPage 11

Requirements Documents are important - eg, for

« negotiation, design & implementation, documents
testing, delivery, re-use, re-implementation.

A Requirements Specification should be

o correct, complete, relevant, consistent, neutral, traceable, objective.
Note: vague vs. abstract.

Requirements Representations should be

o easily precise, easily i easily usable
Distinguish

« hard / soft,

« functional / non-functional,

« open/ fagit

Itis the task of the analyst to elicit requirements.
Natural language is inherently imprecise, counter-measures:
« natural language patterns.

Do not underestimate the value of a good dictionary.
3537

References

Avenis, S. F., Westphal, B., Dietsch. D, Mufiiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P, and Sun,
..editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658-672. Springer.

Brooks, F. P.(1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley.

. Gacitua, R, Ma, L., Nuseibeh, B., Piwek, P., de Roeck, A., Rouncefield, M., Sawyer, P., Willis, A., and Yang, H.
References (2009). Making tacit requirements explicit. talk

|EEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). IEEE, Practice for Software Requir Std 830-1998.

Ludewig, |.and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, 5th edition.

3673 3757

