Softwaretechnik / Software-Engineering

Lecture 9: Live Sequence Charts

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

VL 6 • Introduction
• Requirements Specification
–(• Desired Properties
–(• Kinds of Requirements
–(• Analysis Techniques Documents
 Declinary Specification
 Specification Janguages
 Natural Languages
 Specification Languages
 Securior Tables
 Securior Securior
 Securior Securior
 Securior Securior
 Securior Securior Securior
 Securior Securior Securior
 Securior

The Plan: A Formal Semantics for a Visual Formalism

Concrete syntax (diagram)

LSC Semantics

Excursion: Symbolic Büchi Automata

Content

Topic Area Requirements Engineering: Content

Excursion: Symbolic Büchi Automata
 LSC Semantics:
 Cuts. Fredsets.
 Automaton Construction
 Ful LSC (activation, chart mode)

The Language of a TBA

Symbolic Büchi Automata

Run of TBA

 $w=\sigma_1,\sigma_2,\sigma_3,\dots\in(\Phi(\mathcal{C}_\mathcal{B}) o B)^\omega$ which so

• for each $i\in\mathbb{N}_0$ there is a transition $(q_i,\psi_i,q_{i+1})\in\to$ s.t. $\sigma_i\models\psi_i.$

 $\mathbb{E} = (x=2)(x=5)(x=4)^{6}$ $\mathbb{E} = (x=4)^{6} \cdot (x=4)^{6}$

 $E_{\text{type}}: \underbrace{\Sigma = \{\{x\} \to \mathbb{N}\}}_{\text{odd}(x)} \underbrace{\Sigma = \{\{x\} \to \mathbb{N}\}}_{\text{element}}$

 $\varrho = q_0, q_1, q_2, \ldots \in Q^\omega$ of states is called run of $\mathcal B$ over w if and only if

An infinite sequence

an infinite word, each letter is a valuation of $\Phi(C_B)$.

LSC Semantics: TBA Construction

The Plan: A Formal Semantics for a Visual Formalism

12/

LSC Semantics: It's in the Cuts!

Cut Examples

Cut Examples

 $\{\mathcal{I}_{1,\cdots},\mathcal{I}_{n}\}$ Definition. Let $((\mathcal{L},\preceq,\sim),\mathcal{I},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv},\Theta)$ be an LSC body. - comprises at least one location per instance line, i.e. $\forall I \in \mathcal{I} \bullet C \cap I \neq \emptyset.$ A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a cut of the LSC body iff Cdosed under simultaneity, i.e. $\forall l,l'\in\mathcal{L}\bullet l'\in C\land l \sim l'\implies l\in C, \text{and}$ $\forall \, l, l' \in \mathcal{L} \bullet \, l' \in C \land l \preceq l' \implies l \in C,$

that is, ${\cal C}$ is hot if and only if at least one of its maximal elements is hot. $\Theta(C) = \begin{cases} \text{hot} \quad .\text{ if } \exists \, l \in C \bullet (\sharp l' \in C \bullet l \prec l') \land \Theta(l) = \text{hot} \\ \text{cold} \quad .\text{ otherwise} \end{cases}$

The temperature function is extended to cuts as follows:

13/56

A Successor Relation on Cuts

The partial order " \preceq " and the simultaneity relation " \sim " of locations induce a direct successor relation on cuts of an LSC body as follows:

Definition. Let $C \subseteq \mathcal{L}$ bet a cut of LSC body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{Locinv}, \Theta)$. C∩F = ∅ and C∪F is a cut, i.e. F is closed under simultaneity. A set $\emptyset \neq \mathcal{F} \subseteq \mathcal{L}$ of locations is called <u>fired-set</u> \mathcal{F} of cut C if and only if

ullet locations in \mathcal{F} , that lie on the same instance line, are pairwise unordered, i.e. $\forall l \neq l' \in \mathcal{F} ullet (\exists l \in \mathcal{I} ullet \{l, l'\} \subseteq I) \implies l \not\preceq l' \land l' \not\preceq l,$

• for each asynchronous message reception in \mathcal{F} , the corresponding sending is already in C. $\forall \, (l,E,l') \in \mathsf{Msg} \bullet l' \in \mathcal{F} \implies l \in C.$

The cut $C' = C \cup \mathcal{F}$ is called direct successor of C via \mathcal{F} , denoted by $C \leadsto_{\mathcal{F}} C'$.

15/56

37×

Successor Cut Example

A A d

14/56

The TBA B(Z') of LSC Z' over C and C is $\{C_0,Q_1,q_{(n)}\rightarrow Q_P\}$ with $C_0=C$ of C_0 . Where $C_0=E(B,E')$ $E\in C\}$, C_0 is the standard based on the set of cuts of Z' Z' $q_{(n)}$ is the frament heads on C.

• \neg consists of loops, progress transitions (from $\neg_{Z'}$), and legal earls (cold cond./local inv.).

• $Q_F=\{C\in Q\mid \Theta(C)=\operatorname{cold} \vee C=L'\}$ is the set of cold cuts and the maximal cut.

TBA Construction Principle

- Result in East h(Z) of LSC Z of $(Q,Q_{(H)}, \to Q_{C})$ with Q is the set of that dZ Z is the basic hardward Z and Z is the basic hardward Z of Z and Z is the condition of Z of Z and Z is the condition of Z of Z of Z is the condition Z of Z of Z of Z of Z is the condition Z.

 $\begin{aligned} &\text{So in the following, we "only" need to construct the transitions labels:} \\ &\rightarrow = \{(q,\psi_{\text{long}}(q),q) \mid q \in Q\} \cup \{(q,\psi_{\text{long}}(q,q'),q') \mid q \rightarrow rq'\} \cup \{(q,\psi_{\text{long}}(q),L) \mid q \in Q\} \end{aligned}$

TBA Construction Principle

"Only" construct the transitions labels: $\rightarrow = \{(q,\psi_{loop}(q),q) \mid q \in Q\} \cup \{(q,\psi_{preg}(q,q'),q') \mid q \leadsto_{\mathcal{F}} q'\} \cup \{(q,\psi_{cat}(q),\mathcal{L}) \mid q \in Q\}$

Progress Condition

 $\quad \quad \bullet \ \psi_{\theta}^{\mathsf{Cond}}(q,q_i) = \bigwedge_{\gamma = (L,\psi) \in \mathsf{Cond}, \ \Theta(\gamma) = \theta, \ L \cap (q_i \backslash q) \neq \emptyset} \phi$

 $\psi^{Mod}(q, q_i) = \bigwedge_{\psi \in Mod}(q_i \setminus q_i) \psi \wedge \bigwedge_{i \neq i} \bigwedge_{\psi \in (Mod(q_i \setminus q)) \setminus Mod}(q_i \setminus q_i) \wedge (strict \Longrightarrow \bigwedge_{\phi \in C(\psi) \setminus Mod(\psi)} \gamma \psi)$

 $\psi_{prop}^{\mathrm{hot}}(q,q_{\ell}) = \psi^{\mathrm{Mag}}(q,q_{n}) \wedge \psi_{\mathrm{hot}}^{\mathrm{Cond}}(q,q_{n}) \wedge \psi_{\mathrm{hot}}^{\mathrm{Lodin},\bullet}(q_{n})$

Example

Full LSCs

- $\begin{aligned} & \text{Aful LSC} \ \mathscr{L} = (((\mathcal{L},\preceq_{\sim}),\mathcal{I},\text{Mag, Cond, Locinv},\Theta), a_{0i_0},a_{0i_1},a_{0i_2}) \text{ consists of} \\ & \text{body}((\mathcal{L},\preceq_{\sim}),\mathcal{I},\text{Mag, Cond, Locinv},\Theta), \\ & \text{activation conditions on <math>\phi \in \mathcal{O}(1), \\ & \text{activation conditions on <math>\phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation mode on } \phi \in \mathcal{O}(1), \\ & \text{activation } \phi \in \mathcal{O}(1), \\ & \text{ac$

23/56

Loop Condition

$\psi_{loop}(q) = \psi^{\mathsf{Msg}}(q) \wedge \psi^{\mathsf{Lodin}}_{\mathsf{hot}}(q) \wedge \psi^{\mathsf{Lodin}}_{\mathsf{codd}}(q)$

 $\bullet \ \psi^{\text{Mos}}(q) = \neg \bigvee_{1 \leq i \leq n} \psi^{\text{Mos}}(q,q_i) \wedge \left(\text{strict} \implies \bigwedge_{\psi \in \mathcal{E}_{17} \cap \text{Mos}(\mathcal{L})} \neg \psi \right)$

 $=\psi_{\theta}^{\mathsf{Locker}}(q) = \bigwedge_{\ell=(l,1,\phi,l',\iota')\in\mathsf{Locker},\; \Theta(\ell)=\theta,\; \ell \; \mathsf{active at} \; q \; \phi$

A boation it scalled front location of cut C if and only if $\exists t' \in \mathcal{L} \cdot 1 < t'$. Local invariant $(L_{i_1,i_2}, b_{i_1,i_1})$ is extremented by $(B_i \cap I + 1) \land i_1 = \bullet$. If and only if $B_i \cap I \land i_1 = \bullet$. If $A_i \cap I \cap I \cap I \cap I \cap I$ is the sum of the cut of or $I \cap I \cap I \cap I \cap I$ is the sum of $A_i \cap I \cap I \cap I \cap I$ is the sum of $A_i \cap I \cap I \cap I$ is the sum of $A_i \cap I \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the sum of $A_i \cap I$ is the sum of $A_i \cap I$ in the s

Full LSCs

A set of words $W\subseteq (\mathcal{C}\to\mathbb{B})^\omega$ is accepted by \mathscr{L} if and only if

 $\begin{array}{lll} \operatorname{Adul} \operatorname{LSC} \mathscr{L} = (((\mathcal{L},\preceq,\sim),\mathcal{I},\operatorname{Mag},\operatorname{Cond},\operatorname{Lodinv},\Theta),ac_0,am,\Theta_{\mathscr{L}}) \operatorname{cond}\operatorname{istS}\operatorname{of} \\ \operatorname{body}((\mathcal{L},\preceq,\sim),\mathcal{I},\operatorname{Mag},\operatorname{Cond},\operatorname{Lodinv},\Theta), \\ \operatorname{activation condition and et (0),} \\ \operatorname{activation condition and et (0),} \\ \operatorname{activation condition and et (0),} \\ \operatorname{activation condition condition (0),} \\ \operatorname{activation (0),} \\ \operatorname{activation$

hot	cold	θу
$\forall w \in W \bullet w^0 \models ac \implies$ $w^0 \models \psi_{\mathrm{hol}}^{\mathrm{Cond}}(\emptyset, C_0) \wedge w/1 \in Lang(\mathcal{B}(\mathcal{L}))$	$\exists w \in W \bullet w^0 \models ac \land \\ w^0 \models \psi^{Cond}_{hol}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	am = initial
$ \frac{\forall \underline{w} \in W $	$\underbrace{\frac{\exists w \in W}{\exists k \in \mathbb{N}_0} \bullet w^k \models ac \land}_{w^k \models w^{load}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathcal{L}))}$	am = invariant

where $ac=ac_0 \wedge \psi_{\mathrm{cold}}^{\mathrm{Cont}}(\emptyset,C_0) \wedge \psi^{\mathrm{Mag}}(\emptyset,C_0);C_0$ is the minimal (or instance heads) cut

23/56

Full LSC Semantics: Example

24/56

Example: Buy A Softdrink

Example: Get Change

STUDENTENWERK
OLDENBURG

27/56

26/56

Example: Vending Machine

Positive scenario: Buy a Softdrink
 (i) Insert one 1 eurocoin
 (ii) Press the softdrink button
 (iii) Get a softdrink

Positive scenario: Get Change
 (i) Insert one 50 cent and one 1 euro coin.
 (ii) Press the softdrink button.
 (iii) Get a softdrink
 (iv) Get 50 cent change.

Negative scenario: A Drink for Free
(i) Insert one 1 euro coin.
(ii) Press the 'softdrink' button
(iii) Donot insert any more money.
(iv) Get two softdrinks.

25/56

STUDENTENWERK OLDENBURG

Anti-Scenarios: Don't Give Two Drinks

Pre-Charts

A full LSC $\mathscr{L} = (PC, MC, ac_0, am, \Theta_{\mathscr{L}})$ actually consist of

- $\bullet \ \ \mathsf{pre-dnart} \ PC = ((\mathcal{L}_P, \preceq_P, \sim_P), \mathcal{I}_P, \mathsf{Msg}_P, \mathsf{Cond}_P, \mathsf{LocInv}_P, \Theta_P) \ \text{(possibly empty)}.$

• $\mathsf{main\text{-}chart}\,MC = ((\mathcal{L}_M, \preceq_M, \sim_M), \mathcal{I}_M, \mathsf{Msg}_M, \mathsf{Cond}_M, \mathsf{LocInv}_M, \Theta_M) (\mathsf{non\text{-}empty}).$

- * activation condition $ac_0 \in \Phi(\mathcal{C})$,
 * strictness flag stract if factor. \mathcal{L}' is permissive)
 * activation mode arm $\in \{\text{initial}, \text{invaliant}\}$,
 * chartmode existential $\{\Theta_{\mathcal{L}'} = \text{cold}\}$ or universal $\{\Theta_{\mathcal{L}'} = \text{hot}\}$

29/56

Universal LSC: Example

30/56

Strengthening Scenarios Into Requirements Tell + Tell + Tell (S)

Pre-Charts Semantics

Oli - Sprechart -		
hot	cold	€
$ \forall w \in W \bullet w^{0} \models \varpi e $ $ \wedge w^{0} \models w \otimes w^{0}(\theta, C_{0}^{0}) $ $ \wedge w^{0} \vdash w \otimes w^{0}(\theta, C_{0}^{0}) $ $ \wedge w^{0} \vdash w \otimes w^{0}(\theta, C_{0}^{0}) $ $ \wedge w^{m+1} \models w \otimes w^{0}(\theta, C_{0}^{0}) $ $ \rightarrow w^{m+1} \models \psi \otimes w^{0}(\theta, C_{0}^{0}) $ $ \wedge w/m + 1 \in Lang(B(MC)) $	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet w^0 \models ac$ $\land w^0 \models \psi_{loc}^{loc}(\emptyset, C_0^0)$ $\land w_1, \dots, w_{loc}^{loc}(\emptyset, C_0^N)$ $\land w^{m+1} \models \psi_{loc}^{loc}(\emptyset, C_0^N)$ $\land w^{loc}(\emptyset, C_0^N)$ $\land w^{loc}(\emptyset, MC))$	am = initial
$ \forall w \in W \lor k \le m \in \mathbb{R}_N \bullet u^k \models ac $ $ \wedge u^k \models \psi_0^{loce}(a) \in \mathcal{H}_N \circ \mathcal{H}_N \circ$	$\exists w \in WB \land C m \in \mathbb{N}_0 + w^k \models ac$ $\land w^k \models \mathbb{N}_0^{cod}(\emptyset, \mathbb{C}_0^N)$ $\land w/k + 1, \dots, w/m \in Lang(B(PC))$ $\land w^{m+1} \models \psi_0^{cod}(\emptyset, \mathbb{C}_0^N)$ $\land w/m + 1 \in Lang(B(MC))$	am = invariant

31/56

Strengthening Scenarios Into Requirements

Requirements Engineering with Scenarios

One quite effective approach:

(i) Approximate the software requirements: ask for positive / negative existential scenarios. (ii) Refine result into universal scenarios (and validate them with customer).

Investigate preconditions, side-conditions, exceptional cases and corner-cases.
 I – extend use-cases, refine LSC with continos of cold maintains of cold maintains of cold maintains of control of the control

33/%

Ask the customer to describe example usages of the desired system.
 In the sense of: "If the system is not at all able to do this, then it's not what I want."
 positive use-cases, existential LSC)

Ask the customer to describe behaviour that must not happen in the desired system.
 In the sense of: "If the system does this, then it's not what I want."
 (+) negative use-cases, LSC with pre-chart and hot-false)

• Re-Discuss with customer using example words of the LSCs language.

- dom

Tell Them What You've Told Them...

- Live Sequence Charts (if well-formed)
 have an abstract syntax.
- From an abstract syntax, mechanically construct its TBA.
- A universal LSC is satisfied by a software S if and only if
 all words induced by the computation paths of S
 are accepted by the LSCs TBA.
- An existential LSC is satisfied by a software S if and only if there is a word induced by a computation path of S which is accepted by the LSC's TBA
- Pre-charts allow us to specify
 anti-scenarios ("this must not happen").
 activation interactions.
- discuss (anti-)scenarios with customer,
 generalise into universal LSCs and re-validate.

48/56

References

55/%

Hayel, Dauf Marelly, R. (2003). Come, Leté Play: Sexnairo-Based Programming Using LSCs and the Play-Engine. Springer-Veldag. Springer-Veldag. Springer (2014). Software Engineering. dpunkt-veltag. 3 edition. Rupp, C. and die SDPHSTen (2014). Requirements-Engineering und «Management. Hanses oth edition.

References

56/56