Softwaretechnik / Software-Engineering

Lecture 10: Requirements Engineering
Wrap-Up

2016-06-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Pre-Charts (Again)

Topic Area Requirements Engineering: Content

VL6 « Introduction
Requirements Specification
e Desired Properties

inds of Requirements
Lo Analysis Techniques
* Documents

L. Dictionary, Specification

Specification Languages
[Natural Language
VL7 s Decision Tables

T Synta, Semantics
+ Completenes,Consistency

Vg s Scenarios

. W- User Stories, Use Cases
we .,1 Live Sequence Charts
© Syntax, Semantics

VL10 « Definition: Software & SW Specification
* Wrap-Up

Example: Vending Machine

« Positive scenario: Buy a Softdrink

Insert one 1 euro coi
Press the ‘softdrink’ button.

Get a softdrink.

 Positive scenario: Get Change ooy

Insert one 50 cent and one 1 euro coin.

Press the softdrink button
Geta softdrink.
Get 50 cent change.

» Negative scenario: A Drink for Free
Insert one 1 euro coin

Press the ‘softdrink’ button.

Do not insert any more money.
iv) Get two softdrinks.

(

2

Content

Pre-Charts

o Semantics, once agai

e Requirements Engineering with scenarios
Le Strengthening scenarions into requirements
Software, formally

{~» Software specification

e Requirements Engineering, formally

Le Software implements specification

LSCs vs. Software

e Software implements LSCs

e Scenarios and tests

Lo Play In/Play Out

« Requirements Engineering Wrap-Up

Pre-Charts

AfullLSC.# = (PC, MC, ac, am, ©) actually consists of
o pre=chart PC = ((Lp, <p,~p), Ip, Msgp, Condp, Loclnvp, ©p)
« main-chart MC = ((Lar. <ar. ~ar): Tas, Msgyy, Conday, Loclnvay ,

it}

(©.2 = cold) or universal (€. = hot).

055 empty),

« activation condition ac € ®(C: € {initi
o strictness flag strict, chart mode existent

Concrete syntax:

only one drink
rue
ivariant_I:_permissive

Pre-Charts

ARILSC.Z = (PC, MC, ac, am, ©) actually consists of

 pre-chart PC = ((Lp, =p,~p), Ip,Msgp, Condp, Loclnvp, ©p) (poss. empty)
. TIar. Mgy, Condas, Loclnvar, ©ar).

o main-chart MC = ((Lar, <ar,
, invariant},

o activation condition ac € ®(C),and mode am € {ini
o strictness flag strict, chart mode existential (. = cold) or universal (0. = hot).

where C” and C}7 are the

Requirements Engineering with Scenarios

Universal LSC: Example

OLDENBURG

STUDENTENWERK

] Coovasior | [cromoma | [owpmer

wa(e), (), (1), (a7,), e
() 1= (@), (), (1), (€72), Gporr?), (oSoFT2), LAz), CUATER !, w3s), -
K

(dSoPT), (dSFT?, 0K1), (0U?), (SOLly!), ... <— Slance. xho{

() Heiallyy &.rn\u ,rv el \
R

(i) swkshy chortlmm-Aanals)
s (R0),c07), (p1), (pd7awic), (o!), (w2, ok, (o), .

hﬁrahr. by byl ext wi woin-wrt, ov nett) .

Requirements Engineering with Scenarios .

One quite effective approach:

(0] i the software
Refine result into universal scenarios (and validate them with customer).

ask for positive / negative existential scenarios.

Thatis:

« Ask the customer to describe example usages of the desired system
ble to do this, then it's not what | want.

In the sense of: “If the system is not at
(~ positive use-cases, existential LSC)

o Ask the customer to describe behaviour that must not happen in the esired system.
In the sense of: “If the system does this, then it's not what | want.

(> negat . LSC with pr
« Investigate preconditions, side-conditions, exceptional cases and corer-cases.
(— extend use-cases, refine LSCs with conditions o local invariants)

« Generalise into universal requirements, e, universal LSCs.
« Validate with customer using new positive / negative scenarios.

Universal LSC: Example

=|
£
H

OLDENBURG

88 =

o] [comiun | [crocerna | [oipemn
’ W
2 |
Strengthenizng Scengrios Into Requirements &
— - AP
S 1 T I A |
T o et

Strengthenizng Scengrios Into Requirements

T R o)

s e oy

o Ask customer for (pos./neg.) scenarios, note down as existential LSCs:

Content

10534

Pre-Charts
[e Semantics, once again

e Requirements Engin with scenarios

Lte Strengthening scenarions into requirements
Software, formally

< Software specification
[-¢o Requirements Engineeri
L Software implements specification
LSCs vs. Software

| Software implements LSCs

{4o Scenarios and tests
L Play In/Play Out
« Requirements Engineering Wrap-Up

Strengthening Scengrios Into Requirements e
— — S
Bl-dd - k- Bl

o Ask customer for (pos./neg.) scenarios, note down as existential LSCs:

« Re-Discuss with customer using example words of the LSCs language.

Software and Software Specification, formally

10734

Analysing LSC Reqi’

Requirements on Requirements Specifications

Arequirementsspecifiction should be

+ nevralabstact

Consrain e eslsaton s th necssay,

+ waceale comprehensile
i sounce o eements e documentes.

o notbe onsrnes.
« consistent free of contradictons § + tesable, objecive ¥

s ot unusal that ven the cstomes does o prcisey know. |

Definition. [LSC Consistency] A set of LSCs {.1, . .., £, } is called consistent
if and only if there exists a set of words W’ such that A7_, W = (@] #i8.

T

Software, formally

Definition. Software is a finif iption S of a (possibly infinite)
set [S] of (finite or infinite) computation paths of the form

00y Doy
where
o 0; € £, € No, is called state (or configuration), and
o a; € A,i € Ny, is called action (or event).
The (possibly partial) function [-] : S +- [S] is called interpretation of S.

7

Example: Software, formally

Software s a finite description S of a (possib
of theform oy =5 0 25 7, - - . ;2 state/cor

ite) computation paths
ration; a;: action/event.

« Java Programs. o =1, x=2h 313
t:public int £(int x, int y) { LT @
2 xuxwﬁ o, petZ, x=o y=13
3 y=x/2; s
%0
4 turn y; -
‘. return y Mﬁﬁ?uw\ =36, g2
o pen
15734
Software Specification, formally o
= o
SR NI 4 o L
- &
KN - - Fho- B
Cnoncemen o St S rmare demery
Definition. A software specification is a finite description .
of a (possibly infinite) set [.#] of softwares. ie.
[Z1=A{(s 1)}
The (possibly partial) function [-] : .~ [.#] is called interpretation of .7
16/

Example: Software, formally

Example: Software, formally

Software is

te description S of a (possibly infinite) set [S] of (finite or infin

)

of theform 0, =2 o, =% @, - - 0: state/configuration; a;: action/event.

paths Software is a finite description S of a (possibly) set [S] of (finite or infinite) computation paths.
o

oftheform oy <1+ 7, <2 a - . o: state/configuration; a: action/event.

« Java Programs.
« HTML.

1 <html>

2 <head>

3 <title>SWT 2016</title> G’
4 </head>

5: <body/>

6 </html>

Example: Software Specification

Alphabet:
« M -dispensecashonly,
e C -returncardonly,

M
c

. - dispense cash and retun card.

« Customer 1: “dont care”
A= (melem| §)

» Customer 2: “you choose, but be consistent”
S = (M.C) or (C.M)*

« Customer 3: “consider human errors”

5= (C.M)*

« Java Programs.
* HTML.
o User's Manual.
* etc. etc.

1524 - 1573

More Examples: Software Specification, formally

[Asoftware speci is a finite description 7 of a set [.] of softwares {(S1, [-11), - - }. |

« Decision Tables.

[(Tiromventlaton — Tn ra [ms B2
b | button pressed? x x |- o .blx.wﬂu, X, -
ventiaton off? -l :
| ventiation on? — <[~ i osi= &Mn ()
40| startventiation P _
op | ot | x| e iy - T (1))

17/ B 18734

More Examples: Software Specification, formally

More Examples: Software Specification, formally

i A software specification is a finite description .7 of a set [.#'] of softwares {(S1, []1), - -

« Decision Tables.
o LSCs.

More Examples: Software Specification, formally

[software specification is a inite description 7 of a set [.7] of softwares {(S1, [11

« Decision Tables.

* LSCs.

© Global Invariants.
x>0

18734

More Examples: Software Specification, formally

[Asoftware specification i a inite description .7 of a set [.#] of softwares { (1, []1), - }

« Decision Tables.
* LSCs.
« Global Invariants.
» State Machines.
o Java Programs.
t:public int £(int x, int y) {
o [£3=5(S,c3)f
4 return y;
5:

}

[A software specification is a inite description .7 of a set [-/] of softwares {(S1, []1), -} |

* Dex
* LSCs.
 Global Invariants.

ion Tables.

o State Machines.

Java Programs
o User's Manual.
* etc.etc.

18734

More Examples: Software Specification, formally

[A software specification is a finite description 7 of a set [-7] of softwares {(1, [-]1), -} |

« Decision Tables.

* LSCs.

« Global Invariants.

 State Machines.
— later

18734
The Requirements Engineering Problem Formally
) all computation
. 8 x A)* paths over S and A,
ki - Sean 2 aka. chaos
X requirements, all
. these computation
S paths are allowed
x X (maybe including
i refinements)
one software which one software (= set
does not satisfy the of computation
requirements paths) which satisfies
the requirements,
53
L SctnaioS
« Requirements engineering:
Describe/specify the set of the allowed softy 7
Note: what is not constrained is.
« Software development:
Create one software S whose computation paths [] are all allowed. ie. [5] €[Z]].
 Note [s1
« Often allowed: any refinement of v (- inaminute; eg.allow intermediate transitions),
19734

ation vs. Software

Software Speci

nesve—cloum,

[CNRB) (82,1120}

54 implements . S5 implements .
via Tand M via I'and M!

@ﬁrm“ag MWTQa

How to Prove that a Software Satisfies an LSC?

« Software satisfies existential LSC % if there exists = € 5]
such that . accepts w(r). Prove S = ¢ by demonstrating .

« Note: Existential LSCs* may hint at test-cases for the acceptance test!
(- as well as (positive) scenarios in general, like use-cases)

[=7
=

23/

. Software

How to Prove that a Software Satisfies an LSC?

1

= Software § satisfies existential LSC i there exists 7 € [S]
such that . accepts w(r). Prove § = . by demonstrating .
tential LSCs* may hint at test-cases for the acceptance test!

2 | e e e M
]

i K

(Because they require that the software never ever exhibits the unwanted behaviour)

Prove S i by demonstrating one such that w(r) is not accepted by ..

LSCs as Software Specification

A software S is called compatible with LSC .#’ over C and £ is if and only if

N
we se W to denote the set of words induced by (5]

We say software § satisfies LSC . (without pre-chart), denoted by S |- ., if and only if

Oz am = initial am = invariant
o GweWseuw' 3weWsIke N
g A)
. ok | ac A
2 Aw/k+1 € Lang(B(£))

Software satisfies a set of LSCs, ifand only if S |= . forall 1 < i < n.

34 22
Pushing It Even Further
24734

Tell Them What You’ve Told Them. . .

« Live Sequence Charts (if well-formed)
« have an abstract syntax: instance lines, messages, conditions,
local invariants; mode: hot or cold.
« From an abstract syntax, mechanically construct its TBA.

© Pre-charts allow us to
« specify anti-scenarios ("this must not happen’),
« contrain activation.
« An LSCis satisfied by a software S if and only if
o existential (cold):
® there is aword induced by a computation path of §
 whichis accepted by the LSC’ pre/main-chart TBA.
 universal (hot):
© all words induced by the computation paths of 5
o are accepted by the LSCs pre/main-chart TBA.
© Method:
« discuss (anti-)scenarios with customer,
« generalise into universal LSCs and re-validate.
2534

Example: Software Specification

Geldautomat

Alphabet:
« M -dispense cashonly,

. - return card only,

c
« M -dispense cash and return card.

o Customer 1: “don't care”

= (mclem|)

» Customer 2: “you choose, but be consistent”
Sy = (M.C)* or (C.M)*
« Customer 3: “consider human errors”™

Sy = (C.M)*

2873

Requirements Engineering Wrap-Up

26734
Formal Methods in the Software Development Process
o ED
validate
' -« -¢
Cusomer2 s,
‘ Requirements
141 = (M€, L1, CM, 1)} 0 analyse
Development
Process/ Project
Management
nalyse
e
: 2934

Topic Area Requirements Engineering: Content

VL6 o Introduction
Requirements Spe
[+ Desired Properties
e Kinds of Requirements
Le Analysis Techniques

* Documents
L.

Specification Languages

ictionary, Spe ion
e Natural Language
VL7 <o Decision Tables

W. Syntax, Semantics
 Completeness, Consistency,

Vg ¢ Scenarios
ﬁo User Stories, Use Cases
 Live Sequence Charts
B r Syntax, Semantics
VL10 o Definition: Software & SW Specification
© e Wrap-Up
275

Tell Them What You've Told Them. ..

« ARequirements Specification should be
« correct, complete, relevant, consistent,
neutral, traceable, objective.
« Requirements Representations should be

o easily understandable, precise,
easily maintainable, easily usable.

« Languages / Notations for Requirements Representations:
« Natural Language Patterns
« Decision Tables
« User Stories
« Use Cases
« Live Sequence Charts
« Formal representations
« can be very precise, objective, testable,
o canbe analysed for, eg, completeness, consistency
« canbe verified against a formal design description.
(Formal) inconsistency of, e.g. a decision table
hints atinconsistencies in the requirements.
30/

Requirements Analysis in a Nutshell

« Customers may not know what they want.

« Thats in general not their “fault"!
« Care for tacit requirements,

« Carefor non-functional requirements / constraints.

For requirements elicitation, consider starting with

 scenarios (“positi) and

and elaborate corner cases.

Thus, use cases can be very useful - use case diagrams not so much.

« Care for objectiveness / testability early on.
Ask for each requirements: what is the acceptance test?

 Use formal notations

« tofully understand requirements (precisio),
« for requirements analysis (completeness, etc),

+ to communicate with your developers.

o If in doubt, complement (formal) diagrams with text

lawsuits).

(as safety precaution, e.g.

References

31

Harel, D. and Marelly, R. (2003). Come, Let’ Play: Scenario-Based Programming Using LSCs and the Play-Engine.

Springer-Verlag

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

Rupp. C.and

SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

3473

Literature Recommendation

Aus der Praxis
von bis ag!

(Rupp and die SOPHISTen, 2014)

32

References

3334

