
Prof. Dr. A. Podelski, Dr. B. Westphal Sommersemester 2016
S. Feo Arenis

Softwaretechnik/Software Engineering

http://swt.informatik.uni-freiburg.de/teaching/SS2016/swtvl

Exercise Sheet 5

Early submission: Wednesday, 2016-07-06, 12:00 Regular submission: Thursday, 2016-07-07, 12:00

Exercise 1 – CFA Models (10/20)

Mutual exclusion is the problem of making sure that when multiple processes or entities access a
single shared resource, they do it such that only one process or entity obtains access to the shared
resource at any given time.
For instance, a factory may have a single machine for a production process step that is fed by
multiple incoming production lines, the machine can service only one production line at a time.
We call the part of each process that performs work on the shared resource its critical section.
Mutual exclusion thus should ensure that, at any given time, at most one process can be in its
critical section.
An initial solution is the use of lock variables, that is, shared variables that indicate whether the
resource is in use. A process waits until the value of the lock variable indicates that the resource
is free, sets the value of the variable to indicate that the resource is locked, performs the required
work and then resets the variable to indicate that the resource is free again.

P1: P2:

Worker:

Figure 1: CFA Model C of mutual exclusion by using lock variables.

For the following tasks, consider the CFA model of mutual exclusion by using lock variables shown
in Figure 1. The model contains two identical processes P1 and P2 and a shared resource Worker.

(i) Draw the reachable part of the transition graph of C. Make sure to clearly mark the inital
configuration(s). (5)

(ii) Is mutual exclusion satisfied in this model? Prove your answer by using the transition graph.
(1)

(iii) Does the model have a deadlock? Prove your answer by using the transition graph. (1)

1

http://swt.informatik.uni-freiburg.de/teaching/SS2016/swtvl


(iv) Use Uppaal to simulate the model and generate a trace that demonstrates a scenario where
mutual exclusion is satisfied. Make sure to submit your model and trace files. (2)

(v) Give a query to check mutual exclusion on your Uppaal model. Use the verifier to check
whether your query is satisfied. Document your results. (1)

Exercise 2 – CFA Model Verification (5/20)

A more sophisticated approach to ensure mutual exclusion is the Bakery algorithm1. It works by
assigning each process requesting access to the critical section a number, much like the numbers
printed on tickets for queuing at a bakery. Each process waits until no other process has a lower
number. Since obtaining a number happens concurrently, two processes may obtain the same
number. In that case, the bakery algorithm breaks the tie by giving priority to the process with
the lowest identifier (PID).

(i) In the files bakeryA.xml, bakeryB.xml and bakeryC.xml, we have provided models of three
possible implementations of the Bakery algorithm.

Write a query that serves to determine which one of the three models guarantees mu-
tual exclusion. You can determine whether process k is in its critical section by using the
expression Process(k).CRITICAL.

Explain in your own words how your query works, what do you observe with your query and
how it relates to the property of mutual exclusion. (2)

(ii) Use your query to check with Uppaal which model does satisfy mutual exclusion. For
those that do not, save and submit a trace file that demonstrates it. Make sure to specify
which trace file corresponds to which model. (1)

Uppaal Usage Instructions

Uppaal is installed in the Linux machines of the computer pool. To execute it, use the following
command line:

/usr/local/ufrb/uppaal/uppaal-4.1.19/uppaal

(iii) For the model that satisfies mutual exclusion, we would like to investigate how the com-
plexity of verifying that property behaves with respect to the number of processes. You can
adjust the number of processes in the model by setting the value of constant N in the global
declarations.

Measure the number of states explored and the time used for checking mutual exclusion
on the model configured for N = 2, 3, 4, . . . processes and plot the results (see the Uppaal
command line usage instructions below).

What is the maximum number of processes that can be analyzed on the machines of the com-
puter pool? Analyze your graph and state a hypothesis about the complexity of verification
relative to the number of processes. (2)

Make sure to keep the computing environment conditions stable between measurements. Don’t
forget to indicate with your results the specifications of the machine in which you performed
your measurements.

1https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

2

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm


Uppaal Command Line Usage Instructions

An Uppaal command line verifier is also available in the Linux machines of the computer pool. To
execute it, use the following command line:

/usr/local/ufrb/uppaal/uppaal-4.1.19/bin-Linux/verifyta -u <model> <query>

where <model> is the file where your model is stored and <query> is the name of a text file containing
the query to verify. The output of running verifyta looks like the following:

Options for the verification:

Generating no trace

Search order is breadth first

Using conservative space optimisation

Seed is 1467050321

State space representation uses minimal constraint systems

Verifying formula 1 at line 1

-- Formula is satisfied.

-- States stored : 145 states

-- States explored : 109 states

-- CPU user time used : 430 ms

-- Virtual memory used : 25288 KiB

-- Resident memory used : 4908 KiB

Exercise 3 – Black-box Testing (5/20)

For this task, we have developed an implementation of the shipping costs calculator of Exercise
Sheet 3. The specification for the calculation is the decision table for shipping cost calculation
without the COD rule (R1) given in the tutorial slides (slide 11).

The implementation has the following specification (pre- and postcondition):

• The dimensions allowable for the package are input in whole centimeters and may range
from 1cm to 250cm.

• The weight of the package is input in whole grams and may range from 1g to 32000g.

• The type of the destination address is given as a string, it can be ‘metro’, ‘interm’ or ‘rural’.

• The program calculates the price in cents and prints it on the screen.

The users of the program observed some calculations being performed incorrectly. Unfortunately,
they cannot remember which inputs caused the program to misbehave. You are now in the role
of the test engineer and are requested to create a test suite. In particular, we are interested in
determining which rules of the decision table have been implemented incorrectly.

(i) Give a test suite to check whether the program correctly implements all rules of the decision
table. I.e., whether the program calculates the shipping price as specified when operated
inside its specification. Describe the strategy you used to select the test cases.

Submit a test script according to the instructions below. (4)

(ii) Your tutor will execute the tests in your test suite using your test script. There are the
following possibilities:

• Your test suite finds one rule that is implemented incorrectly. (1)

• Your test suite finds a second rule that is implemented incorrectly. (5 bonus)

• Your test suite finds a third rule that is implemented incorrectly. (100 bonus)

• Your test suite finds more rules that are implemented incorrectly. (1000 bonus each)

Hint: You can assume that the project leader allotted a time budget for the creation of the test
suite equivalent to 4 exercise sheet points. Submit a number of test cases that is reasonable
to achieve within that budget.

3



Instructions for the Testing Exercise

Before you begin, you need to request a team ID to your tutor by mail. We have created a separate
binary to test for each team. Your tutor will assign a number from 0 to 99. The team ID will be
used to evaluate your results on the particular implementation of the shipping calculator.
In order to create a test script, login to one of the Linux machines of the computer pool and perform
the following steps:

• Create a directory where you would like to store your results.

• Execute the installation script as follows:
/home/arenis/testing/install.sh ID

where ID is the group ID that you received from your tutor. The script will create the file
testsuite.sh on the current directory.

• Use your favorite editor to open that file and insert one line per test case at the end of the file
using the folloowing format:

do test W H L Wt Type Exp

where:

– W is the width of the package in cm.

– H is the height of the package in cm.

– L is the length of the package in cm.

– Wt is the weight of the package in grams.

– Type is the type of the shipping address: ‘metro’, ‘interm’ or ‘rural’.

– Exp is the expected result of the test.

• Save the file and submit it.

Running the tests (optional)

Note that task (i) only requires you to submit your test script. However, if you would like to
execute the test suite yourself, the binaries for testing are accessible. You may execute them at your
discretion.

• To run the test cases in your test suite, execute the command:
./testsuite.sh

• The script will execute your test suite and report the results.

4


