
–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 14: UML State Machines

2016-06-30

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content

–
14

–
2

0
16

-0
6

-3
0

–
S

b
lo

ck
co

n
te

n
t

–

2/38

• Introduction and Vocabulary

• Principles of Design

(i) modularity

(ii) separation of concerns

(iii) information hiding and data encapsulation

(iv) abstract data types, object orientation

• Software Modelling
(i) views and viewpoints, the 4+1 view

(ii) model-driven/-based software engineering

(iii) Unified Modelling Language (UML)

(iv) modelling structure

a) (simplified) class diagrams

b) (simplified) object diagrams

c) (simplified) object constraint logic (OCL)

(v) modelling behaviour

a) communicating finite automata

b) Uppaal query language

c) implementing CFA

d) an outlook on UML State Machines

• Design Patterns

• Testing: Introduction

VL 11

..

.

VL 12

..

.

VL 13

..

.

VL 14
..
.

VL 15
..
.



Content

–
14

–
2

0
16

-0
6

-3
0

–
S

co
n

te
n

t
–

3/38

• CFA at Work continued

• design checks and verification

• Uppaal architecture

• case study

• CFA vs. Software

• a CFA model is software

• implementing CFA

• Recall MDSE

• UML State Machines

• Core State Machines

• steps and run-to-completion steps

• Hierarchical State Machines

• Rhapsody

• UML Modes

Design Sanity Check: Drive to Configuration

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

4/38

• Question: Is is (at all) possible to have no water in the vending machine model?
(Otherwise, the design is definitely broken.)

• Approach: Check whether a configuration satisfying

w = 0

is reachable, i.e. check
NVM |= ∃♦w = 0.

for the vending machine model NVM .



Design Check: Scenarios

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

5/38

• Question: Is the following existential LSC satisfied by the model?
(Otherwise, the design is definitely broken.)

LSC: buy tea
AC: true
AM: initial I: permissive

User Coin Validator Choice Panel

C50

C50

C50

TEA

¬E1 !

• Approach: Use the following newly created CFA ‘Scenario’

end_of_scenario

TEA!C50!C50!C50!

instead of User and check whether location end_of_scenario is reachable, i.e. check

N ′
VM |= ∃♦ Scenario.end_of_scenario.

for the modified vending machine model N ′
VM

.

Design Verification: Invariants

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

6/38

• Question: Is it the case that the “tea” button is only enabled
if there is e 1.50 in the machine?
(Otherwise, the design is broken.)

• Approach: Check whether the implication

tea_enabled =⇒ CoinValidator.have_c150

holds in all reachable configurations, i.e. check

NVM |= ∀� tea_enabled imply CoinValidator.have_c150

for the vending machine model NVM .

drink_ready

have_c150

have_e1

have_c100

have_c50idle

OK?OK? OK?OK?

E1?

tea_enabled := (t > 0)

C50?

water_enabled := (w > 0),
tea_enabled := (t > 0)

C50?

tea_enabled := (t > 0)

E1?

soft_enabled := (s > 0)

C50?

soft_enabled := (s > 0)

C50?

water_enabled := (w>0)



Design Verification: Sanity Check

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

7/38

• Question: Is the “tea” button ever enabled?
(Otherwise, the considered invariant

tea_enabled =⇒ CoinValidator.have_c150

holds vacuously.)

• Approach: Check whether a configuration satisfying water_enabled = 1 is reachable.

Exactly like we did with w = 0 earlier.

Design Verification: Another Invariant

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

8/38

• Question: Is it the case that, if there is money in the machine
and water in stock, that the “water” button is enabled?

• Approach: Check

NVM |= ∀� (CoinValidator.have_c50 or CoinValidator.have_c100 or CoinValidator.have_c150)

imply water_enabled.

drink_ready

have_c150

have_e1

have_c100

have_c50idle

OK?OK? OK?OK?

E1?

tea_enabled := (t > 0)

C50?

water_enabled := (w > 0),
tea_enabled := (t > 0)

C50?

tea_enabled := (t > 0)

E1?

soft_enabled := (s > 0)

C50?

soft_enabled := (s > 0)

C50?

water_enabled := (w>0)



Recall: Universal LSC Example

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aa

tw
o

rk
re

st
–

9/38

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !)

water_in_stock

dWATER

OK

¬(dSoft! ∨ dTEA!)

Uppaal Architecture

–
14

–
2

0
16

-0
6

-3
0

–
S

u
p

p
aa

la
rc

h
–

10/38

server

verifyta

yes/no/don’t know

.xml .trc .q

C++

Java



Case Study: Wireless Fire Alarm System

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
aw

fa
s

–

11/38

(Arenis et al., 2014)

Components

Jammer

Switcher

gBlockedChannel

gO�Sensor / gO�Repeater

Media
. . .

Master

Frame WindowTimers

SlotTimer  

RX Channels

TX Channels

FrameTimer  

. . .

errorDetected channel

ChanRot

channelLZ, ...

���������	

�����
 ����������	

������

	������������
����
�
	������������� !	"!�#������	$

	���������� ��!%�
�
����������	

��������

�$�������!�

���������	

������&�


���������	

�������


����������	

������&��

�$�������!�

����
�'!"$

!��"�'!"$

��
���'�
�
(�"�!'!"$

	������������% !	"!�#������	$

	�������� ��!)�
� 	�����������$�����
*!�

���!'�
�

	������������ !	"!�#������	$

	������������ !	"!
����

	�������+�� ��!%�
�

* �
��",-�.����

	�������+����� !	"!

	�������+����
����
�

	������+� ��!)�
�

* �
��",-�.����

	�������+���� !	"!

* �
��",-�.����

	�������+����% !	"!

(R1) The loss of the ability of the system to transmit a signal from a component to the central unit
is detected in less than 300 seconds [...].

∧
i∈C

� (⌈FAIL = i ∧ ¬DETi⌉ =⇒ ℓ ≤ 300s)

(R2) A single alarm event is displayed at the central unit within 10 seconds.

∧
i∈C⌈ ALARM{i} ⌉ =⇒ � (⌈ALARMi ∧ ¬DISPi⌉ =⇒ ℓ ≤ 10s) ,

Content

–
14

–
2

0
16

-0
6

-3
0

–
S

co
n

te
n

t
–

12/38

• CFA at Work continued

• design checks and verification

• Uppaal architecture

• case study

• CFA vs. Software

• a CFA model is software

• implementing CFA

• Recall MDSE

• UML State Machines

• Core State Machines

• steps and run-to-completion steps

• Hierarchical State Machines

• Rhapsody

• UML Modes



CFA vs. Software

–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

13/38

A CFA Model Is Software

–
14

–
2

0
16

-0
6

-3
0

–
S

cf
as

w
–

14/38

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0

α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpreta-
tion of S .

• Let C(A1, . . . ,An) be a network of CFA.

• Σ = Conf

• A = Act

• JCK = {π = 〈~ℓ0, ν0〉
λ1−−→ 〈~ℓ1, ν1〉

λ2−−→ 〈~ℓ2, ν2〉
λ3−−→ · · · | π is a computation path of C}.

• Note: the structural model just consists of the set of variables and the locations of C.



Model-Driven Software Engineering

–
14

–
2

0
16

-0
6

-3
0

–
S

m
d

se
–

16/38

• (Jacobson et al., 1992): “System development is model building.”

• Model driven software engineering (MDSE): everything is a model.

• Model based software engineering (MBSE): some models are used.

Idea

Structure Declarative
Behaviour

︸
︷
︷

︸

Declarative
Behaviour′

︸
︷
︷

︸

Structure′ Constructive
Behaviour

︸
︷
︷

︸

Structure′′ Constructive
Behaviour′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements
model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program



Implementing CFA

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

17/38

• Now that we have a CFA model C(A1, . . . ,An) (thoroughly checked using Uppaal),
we would like to have software — an implementation of the model.

• This task can be split into two sub-tasks:

(i) implement each CFA Ai in the model by module SAi
,

(ii) implement the communication in the network by module SC .

(This has, by now, been provided implicitly by the Uppaal simulator and verifier.)

SC

A1 A2 . . . An

calls

Example

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

18/38

W0dispense

Wi
FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK! DWATER?

w := w - 1



Example

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

18/38

W0dispense

Wi
FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK! DWATER?

w := w - 1

int w := 3;

typedef {Wi , dispense,W0} st_T ;
st_T st := Wi ;

Set〈Act〉 take_action( Act α ) {
Set〈Act〉 R := ∅;
if

� st = Wi : if

� α = DWATER? : w := w − 1;
st := dispense;
if (w = 0) R := R ∪ {DOK !};
if (w > 0) R := R ∪ {DOK !};

� α = FILLUP? : w := 3;
st := Wi ;
R := R ∪ {FILLUP?,DWATER?};

fi;
� st = dispense : if

� α = DOK ! ∧ w = 0 : st := W0 ;
R := R ∪ {FILLUP?};

� α = DOK ! ∧ w > 0 : st := Wi ;
R := R ∪ {FILLUP?};

fi;
� st = W0 : if

� α = FILLUP? : w := 3;
st := Wi ;
R := R ∪ {FILLUP?,DWATER?};

fi;
fi;
return R;

}

Translation Scheme. . .

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

19/38

. . . for A = ({ℓ1, . . . , ℓm}, B, {v1, . . . , vk}, E, ℓini) with

E = {(ℓ1, α1,1, ϕ1,1, ~r1,1, ℓ
′
1,1), . . . , (ℓ1, α1,n1

, ϕ1,n1
, ~r1,n1

, ℓ
′
1,n1

),
. . .
(ℓm, αm,1, ϕm,1, ~rm,1, ℓ

′
m,1), . . . , (ℓm, αm,nm , ϕm,nm , ~rm,nm , ℓ

′
m,nm

)} :

T1 v1 := v1,ini ; . . .Tk vk := vk,ini ;

typedef {ℓ1 , . . . , ℓm} st_T ;
st_T st := ℓini ;

Set〈Act〉 take_action(Act α ) {
Set〈Act〉R := ∅;
if

..

.
� st = ℓi : if

..

.
� α = αi,j ∧ ϕi,j : ~ri,j ;

st := ℓ′i,j ;

if (ℓ′i,j = ℓ1 ∧ ϕ1,1) R := R ∪ {α1,1};

...
if (ℓ′i,j = ℓm ∧ ϕm,nm) R := R ∪ {αm,nm};

...
fi;

...
fi;
returnR;

}



Deterministic CFA

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

20/38

Definition. A network of CFA C with (joint) alphabet B is called deterministic if
and only if each reachable configuration has at most one successor configuration,
i.e. if

∀ c ∈ Conf (C) reachable ∀λ ∈ B!? ∪ {τ} ∀ c1, c2 ∈ Conf (C) •

c
λ
−→ c1 ∧ c

λ
−→ c2 =⇒ c1 = c2.

Proposition. Whether C is deterministic is decidable.

Proposition. If C is deterministic, then the translation of C is a deterministic program.

Putting It All Together

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

21/38

• Let N = C(A1, . . . ,An) with pairwise disjoint variables.

• Assume B = Binput ∪̇ Binternal , where Binput are dedicated input channels,
i.e. there is no edge with action a! and a ∈ Binput .

• Then software SN consists of SA1
, . . . , SAn and the following SC .

Set〈Act〉R1 := R1,ini , . . . , Rn := Rn,ini ; // initially enabled actions

void main() {
do

� true : if

� true : (α, snd , rcv) := select(R1, . . . , Rn); // choose synchronisation
// (rcv = 0 if α = τ,
// blocks on deadlock)

� true : (α, snd , rcv) := read_input(); // or read input (snd = 0)
fi

for (k =1 to n) if (snd = k) Rk := take_actionk(α); // sender
for (k =1 to n) if (rcv = k) Rk := take_actionk(ᾱ); // receiver
// snapshot

od

}



Model vs. Implementation

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

22/38

• Define JSN K to be the set of computation paths σ0

α
1−−→ σ1

α
2−−→ σ2 · · ·

such that σi has the values at ‘snapshot ’ at the i-th iteration and αi is the i-th action.

• Then JSN K bisimulates T (C(A0,A1, . . . ,An)) where A0 has one location ℓ and edges

E0 = {(ℓ, α!, true, 〈〉, ℓ) | α ∈ Binput}.

FILLUP!

C50! WATER!

half_idle

water_selectedhave_c50idle

DWATER!DOK?

WATER?C50?

W0dispense

Wi
FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK! DWATER?

w := w - 1

Model vs. Implementation

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

22/38

• Define JSN K to be the set of computation paths σ0

α
1−−→ σ1

α
2−−→ σ2 · · ·

such that σi has the values at ‘snapshot ’ at the i-th iteration and αi is the i-th action.

• Then JSN K bisimulates T (C(A0,A1, . . . ,An)) where A0 has one location ℓ and edges

E0 = {(ℓ, α!, true, 〈〉, ℓ) | α ∈ Binput}.

FILLUP!

C50! WATER!

half_idle

water_selectedhave_c50idle

DWATER!DOK?

WATER?C50?

W0dispense

Wi
FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK! DWATER?

w := w - 1

• Yes, and. . . ?

• If Uppaal reports that NVM |= ∃♦w = 0 holds, then w = 0 is reachable in JSNVM
K.

• If Uppaal reports that

NVM |= ∀� tea_enabled imply CoinValidator.have_c150

holds, then JSNVM
K is correspondingly safe.



Model-Driven Software Engineering

–
14

–
2

0
16

-0
6

-3
0

–
S

m
d

se
–

23/38

• (Jacobson et al., 1992): “System development is model building.”

• Model driven software engineering (MDSE): everything is a model.

• Model based software engineering (MBSE): some models are used.

Idea

Structure Declarative
Behaviour

︸
︷
︷

︸

Declarative
Behaviour′

︸
︷
︷

︸

Structure′ Constructive
Behaviour

︸
︷
︷

︸

Structure′′ Constructive
Behaviour′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements
model

requirements/
constraints

design

system model

|=
?

|=
?

generate/
program

Content

–
14

–
2

0
16

-0
6

-3
0

–
S

co
n

te
n

t
–

24/38

• CFA at Work continued

• design checks and verification

• Uppaal architecture

• case study

• CFA vs. Software

• a CFA model is software

• implementing CFA

• Recall MDSE

• UML State Machines

• Core State Machines

• steps and run-to-completion steps

• Hierarchical State Machines

• Rhapsody

• UML Modes



UML State Machines

–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

25/38

UML Core State Machines

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

26/38

C

D
x : Int = 27

itsD

0..1
itsC

0..1

〈〈signal〉〉

E

〈〈signal〉〉

F

〈〈signal〉〉

G

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

annot ::=
[
〈event〉[ . 〈event〉]∗
︸ ︷︷ ︸

trigger

[ [ 〈guard〉 ] ] [ / 〈action〉]
]

with

• event ∈ E , (optional)

• guard ∈ ExprS (default: true, assumed to be in ExprS )

• action ∈ ActS (default: skip, assumed to be in ActS )



Event Pool and Run-To-Completion

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

27/38

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

Event Pool and Run-To-Completion

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

27/38

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2



Event Pool and Run-To-Completion

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

27/38

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

Event Pool and Run-To-Completion

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

27/38

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C u2 : D

x = 27

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0
5.b s1 1 0 s1 1



Rhapsody Architecture

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

28/38

C.h D.h

C.cpp D.cpp

MainDefaultComponent.cpp

DfltCmp.exe

generate

build / make

(compiler)

run

Rhapsody Architecture

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

28/38

C.h D.h

C.cpp D.cpp

MainDefaultComponent.cpp

DfltCmp.exe

generate

build / make

(compiler)

run

E!

go

“D just
stepped from
s1 to s2 by
transition t”



Composite (or Hierarchical) States

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

29/38

• OR-states, AND-states Harel (1987).

• Composite states are about abbreviation, structuring, and avoiding redundancy.

n

•
w e

s

resigned

X/
X/

X/

X/

•

n

•
w e

s

resigned

X/

n

fastN

•

wfastW e

fastE

s

fastS

F/

F/

•

n

•
w e

s

•

slow

fast

F/F/

Example

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

30/38

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser

->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();



Would be Too Easy. . .

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

31/38

•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

→ “Software Design, Modelling, and Analysis with UML” in the winter semester.

UML Modes

–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

32/38



UML and the Pragmatic Attribute

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

lm
o

d
e

–

33/38

Recall: definition “model” (Glinz, 2008, 425):

(iii) the pragmatic attribute,
i.e. the model is built in a specific context for a specific purpose.

Examples for context/purpose:

Floorplan as sketch: Floorplan as blueprint: Floorplan as program:

+ wiringplan

+ windows

+ ...

With UML it’s the Same [http://martinfowler.com/bliki]

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

lm
o

d
e

–

34/38

The last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML
because there are differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmlMode to you.”

Claim:

• This not only applies to UML as a language (what should be in it etc.?),

• but at least as well to each individual UML model.



With UML it’s the Same [http://martinfowler.com/bliki]

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

lm
o

d
e

–

34/38

The last slide is inspired by Martin Fowler, who puts it like this:

“[...] people differ about what should be in the UML
because there are differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, and UmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmlMode to you.”

Claim:

• This not only applies to UML as a language (what should be in it etc.?),

• but at least as well to each individual UML model.

Sketch

In this UmlMode developers use
the UML to help communicate
some aspects of a system. [...]

Sketches are also useful in
documents, in which case the
focus is communication ra- ther
than completeness. [...]

The tools used for sketching are
lightweight drawing tools and
often people aren’t too
particular about keeping to
every strict rule of the UML.
Most UML diagrams shown in
books, such as mine, are
sketches.
Their emphasis is on selective
communication rather than
complete specification.
Hence my sound-bite “compre-
hensiveness is the enemy of
comprehensibility”

Blueprint

[...] In forward engineering the
idea is that blueprints are
developed by a designer whose
job is to build a detailed design
for a programmer to code up.
That design should be
sufficiently complete that all
design decisions are laid out
and the programming should
follow as a pretty
straightforward activity that
requires little thought. [...]

Blueprints require much more
sophisticated tools than
sketches in order to handle the
details required for the task. [...]

Forward engineering tools sup-
port diagram drawing and back
it up with a repository to hold the
information. [...]

ProgrammingLanguage

If you can detail the UML
enough, and provide semantics
for everything you need in
software, you can make the
UML be your programming
language.

Tools can take the UML
diagrams you draw and
compile them into executable
code.

The promise of this is that UML
is a higher level language and
thus more productive than
current programming
languages.

The question, of course, is
whether this promise is true.
I don’t believe that graphical
programming will succeed just
because it’s graphical. [...]

UML-Mode of the Lecture: As Blueprint

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

lm
o

d
e

–

35/38

• The “mode” fitting the lecture best is AsBlueprint.

Goal:

• be precise to avoid misunderstandings.

• allow formal analysis of consistency/implication
on the design level — find errors early.

Yet we tried to be consistent with the (informal semantics)

from the standard documents OMG (2007a,b) as far as possible.

Plus:

• Being precise also helps to work in mode AsSketch:

Knowing “the real thing” should make it easier to

(i) “see” which blueprint(s) the sketch is supposed to denote, and

(ii) to ask meaningful questions to resolve ambiguities.



Tell Them What You’ve Told Them. . .

–
14

–
2

0
16

-0
6

-3
0

–
S

tt
w

y
tt

–

36/38

• We can use tools like Uppaal to

• check and verify CFA design models against requirements.

• CFA (and state charts)

• can easily be implemented using the translation scheme.

• Wanted: verification results carry over to the implementation.

• if code is not generated automatically,

verify code against model.

• UML State Machines are

• principally the same thing as CFA,
yet provide more convenient syntax.

• Semantics uses

• asynchronous communication,

• run-to-completion steps

in contrast to CFA.

(We could define the same for CFA, but then

the Uppaal simulator would not be useful any more.)

• Mind UML Modes.

References

–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

37/38



References

–
14

–
2

0
16

-0
6

-3
0

–
m

ai
n

–

38/38

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P., and Sun,
J., editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658–672. Springer.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik Spektrum,
31(5):425–434.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274.

Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.


